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) . entailment . 9/11 Report
began to line up for a White House tour. Pennsylvania Avenue.

A blackrace car starts up in front of a crowd of people. contradiction A manis driving down a lonely road. SNLI

Only encoding-based models are eligible for the RepEval 2017 Shared Task.

[https://repeval2017.github.io/shared/], [https://nlp.stanford.edu/projects/snli/]
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Encoding-based Model: models that transform sentences into fixed-
length vector representations and reason using only those
representations without cross-attention between two sentences
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A portable neural model to transform the source sentence
Into some sentence-level meaning representation

* A plug and play module
« Sentence-level knowledge unit
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300D NSE encoders (Munkhdalai & Yu 2016)
84.6% on SNLI

BiLSTM Encoder (Williams et al., 2017)
67.5%/67.1% on MultiNLI (Matched/Mismatched)

There is still much scope for improvement.

[https://repeval2017.github.io/shared/], [https://nlp.stanford.edu/projects/snli/] 5
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One Layer biLSTM with Max-pooling

[Conneauetal., 2016] 7
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By stacking layers of biLSTM the model was able to learn some high-level
semantic features that are useful for natural language inference task.

[Simonyan etal., 2016] 8
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Shortcut-connections help sparse gradient from max-pooling to flow into lower layers.

[Hashimoto et al., 2016] 9
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Shared Task Competition Results

Team Name Authors Matched Mismatched Model Details

alpha (ensemble) Chen et al. 74.9 % 74.9%  STACK, CHAR, ATTN., PooL, PRODDIFF
YixinNie-UNC-NLP Nie and Bansal 74.5% 73.5% STACK, PooL, PRODDIFF, SNLI

alpha Chen et al. 73.5% 73.6%  STACK, CHAR, ATTN, POOL, PRODDIFF
Rivercorners (ensemble) Balazs et al. 72.2% 72.8%  ATTN, PooL, PRODDIFF, SNLI
Rivercorners Balazs et al. 72.1% 72.1%  ATTN, PooL, PRODDIFF, SNLI
LCT-MALTA Vu et al. 70.7% 70.8% CHAR, ENHEMB, PRODDIFF, POOL
TALP-UPC Yang et al. 67.9% 68.2% CHAR, ATTN, SNLI

BiLSTM baseline Williams et al. 67.0% 67.6% PooL, PRODDIFF, SNLI

RepEval 2017 shared task competition results

[Nangia etal., 2017]
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1| UNG Ablation Analysis
Layers and Dimensions Accuracy

#layers bilstm-dim Matched  Mismatched

1 512 72.5 72.9
2 512 + 512 73.4 73.6
1 1024 72.9 72.9
2 512 + 1024 73.7 74.2
1 2048 73.0 73.5
2 512 + 2048 73.7 74.2
2 1024 + 2048 73.8 74.4
2 2048 + 2048 74.0 74.6
3 512 + 1024 + 2048 74.2 74.7

Results for models with different of biLSTM layers and their hidden state dimensions

Natural language inference tasks do require some high-level features that
could be learned after applying multiple bi-RNN layers in sequence

11
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Matched Mismatched

without any shortcut connection
only word shortcut connection
full shortcut connection

72.6 73.4
74.2 74.6
74.2 74.7

Results with and without shortcut connections.

Main performance gain from shortcut property comes from
shortcut-connection for word-embedding

12
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DERARTNENT o Ablation Analysis

#of MLPs Activation | Matched Mismatched
1 tanh 73.7 74.1
2 tanh 73.5 73.6
1 relu 74.1 74.7
2 relu 74.2 74.7

Results for different MLP classifiers

Rectified linear unit is better than hyperbolic tangent function in this task

13
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Model Accuracy
SNLI Multi-NLI Matched Multi-NLI Mismatched

CBOW (Williams et al., 2017) 80.6 65.2 64.6

biLSTM Encoder (Williams et al., 2017) 81.5 67.5 67.1
300D Tree-CNN Encoder (Mou et al., 2015) 82.1 — —
300D SPINN-PI Encoder (Bowman et al., 2016) | 83.2 — —
300D NSE Encoder (Munkhdalai and Yu, 2016) 84.6 — —
biLSTM-Max Encoder (Conneau et al., 2017) 84.5 — —

Our biLSTM-Max Encoder 85.2 71.7 71.2

Our Shortcut-Stacked Encoder 86.1 74.6 73.6

Test Results on SNLI and Multi-NLIdatasets

Our encoding-based model achieves new state-of-the-art on SNLI

14
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W1 Wo W3 Wgu W5 Wg W7 Wg

Each column in the final vector representation corresponds to each
word in the source sentence and its surroundings/context

15
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Column-wise matching between final vector representation of the two
sentence corresponds to word matching between two sentence = similar to

attention between two sentences

16
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I like research . I do not like research
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Max-pooling vs. Attention

Soft-attention Max-pooling

-

TN

€; = f(wu )

a = softmax(e)

V= Za,hz

Selectively combining information from each item of the source
Into a compact representation.

We are trying better/advanced max-pooling methods currently.

18
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Authors I-NN Genre Accuracy
Chen et al. 67.3%
Nie and Bansal 74.0%
Balazs et al. 69.2%
Vu et al. 67.0%
Yang et al. 54.7%

Table shows the percentage of times the first nearest neighbor belongs to the same genre
as the sample sentence.

* Learned representations are not genre-agnostic
* Potential ability to handle genre classification task

[Nangia et al., 2017] 19
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Sentences tend to be more similarto one another if they have more structural features in
common.

[Nangia et al., 2017] 20
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