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Task and Motivation

[https://repeval2017.github.io/shared/], [https://nlp.stanford.edu/projects/snli/]

Premise Label Hypothesis Genre
The Old One always comforted Ca'daan, except 
today. neutral Ca'daan knew the Old One very well. Fiction

Your gift is appreciated by each and every student 
who will benefit from your generosity. neutral Hundreds of students will benefit from your 

generosity. Letters

yes now you know if if everybody like in August when 
everybody's on vacation or something we can dress a 
little more casual or

contradiction August is a black out month for vacations in 
the company.

Telephone 
Speech

At the other end of Pennsylvania Avenue, people 
began to line up for a White House tour. entailment People formed a line at the end of 

Pennsylvania Avenue. 9/11 Report

A black race car starts up in front of a crowd of people. contradiction A man is driving down a lonely road. SNLI

2

Only encoding-based models are eligible for the RepEval 2017 Shared Task.



Motivation of Encoding-based Models

Encoding-based Model: models that transform sentences into fixed-
length vector representations and reason using only those 

representations without cross-attention between two sentences

3



Motivation of Encoding-based Models

A portable neural model to transform the source sentence 
into some sentence-level meaning representation
• A plug and play module
• Sentence-level knowledge unit
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Existing Encoding-based Model Results

[https://repeval2017.github.io/shared/], [https://nlp.stanford.edu/projects/snli/]

300D NSE encoders (Munkhdalai & Yu 2016)
84.6% on SNLI

BiLSTM Encoder (Williams et al., 2017)
67.5%/67.1% on MultiNLI (Matched/Mismatched) 

There is still much scope for improvement. 
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Typical Architecture of Encoding-based Model
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Encoder (Stacking bi-LSTM)
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By stacking layers of biLSTM the model was able to learn some high-level 
semantic features that are useful for natural language inference task.

8[Simonyan et al., 2016]
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Encoder (Shortcut-connection)

Shortcut-connections help sparse gradient from max-pooling to flow into lower layers.

9[Hashimoto et al., 2016]



Shared Task Competition Results

[Nangia et al., 2017]

#Examples #Wds. ‘S’ parses
Genre Train Dev. Test Prem. Prem. Hyp. Agrmt. BiLSTM Acc.

SNLI 550,152 10,000 10,000 14.1 74% 88% 89.0% 81.5%

FICTION 77,348 2,000 2,000 14.4 94% 97% 89.4% 66.8%
GOVERNMENT 77,350 2,000 2,000 24.4 90% 97% 87.4% 68.0%
SLATE 77,306 2,000 2,000 21.4 94% 98% 87.1% 68.4%
TELEPHONE 83,348 2,000 2,000 25.9 71% 97% 88.3% 67.7%
TRAVEL 77,350 2,000 2,000 24.9 97% 98% 89.9% 66.8%

9/11 0 2,000 2,000 20.6 98% 99% 90.1% 68.5%
FACE-TO-FACE 0 2,000 2,000 18.1 91% 96% 89.5% 67.5%
LETTERS 0 2,000 2,000 20.0 95% 98% 90.1% 66.4%
OUP 0 2,000 2,000 25.7 96% 98% 88.1% 66.7%
VERBATIM 0 2,000 2,000 28.3 93% 97% 87.3% 67.2%

MultiNLI Overall 392,702 20,000 20,000 22.3 91% 98% 88.7% 67.4%

Table 2: Key statistics for the corpus broken down by genre, presented alongside figures from SNLI
for comparison. The first five genres represent the matched section of the development and test sets, and
the remaining five represent the mismatched section. The first three statistics shown are the number of
examples in each genre. #Wds. Prem. is the mean token count among premise sentences. ‘S’ parses is
the percentage of premises or hypotheses which the Stanford Parser labeled as full sentences rather than
fragments. Agrmt. is the percent of individual annotator labels that match the assigned gold label used
in evaluation. BiLSTM Acc. gives the test accuracy on the full test set for the BiLSTM baseline model
trained on MultiNLI and SNLI.

Team Name Authors Matched Mismatched Model Details

alpha (ensemble) Chen et al. 74.9% 74.9% STACK, CHAR, ATTN., POOL, PRODDIFF
YixinNie-UNC-NLP Nie and Bansal 74.5% 73.5% STACK, POOL, PRODDIFF, SNLI
alpha Chen et al. 73.5% 73.6% STACK, CHAR, ATTN, POOL, PRODDIFF
Rivercorners (ensemble) Balazs et al. 72.2% 72.8% ATTN, POOL, PRODDIFF, SNLI
Rivercorners Balazs et al. 72.1% 72.1% ATTN, POOL, PRODDIFF, SNLI
LCT-MALTA Vu et al. 70.7% 70.8% CHAR, ENHEMB, PRODDIFF, POOL
TALP-UPC Yang et al. 67.9% 68.2% CHAR, ATTN, SNLI
BiLSTM baseline Williams et al. 67.0% 67.6% POOL, PRODDIFF, SNLI

Table 3: RepEval 2017 shared task competition results. The Model Details column lists some of the key
strategies used in each system, using keywords: STACK: use of multilayer bidirectional RNNs, CHAR:
character-level embeddings, ENHEMB: embeddings enhanced with auxiliary features, POOL: max or
mean pooling over RNN states, ATTN: intra-sentence attention, PRODDIFF: elementwise sentence prod-
uct and difference features in the final entailment classifier, SNLI: use of the SNLI training set.

veys the key differences between systems, and the
Model Details column in Table 3 serves as a sum-
mary reference for these differences.

Depth Chen et al. and Nie and Bansal use three-
layer bidirectional RNNs, while others only used
single-layer RNNs. This likely contributes signif-
icantly to their good performance, as it is the most
prominent feature shared only by these two top
systems. They both use shortcut connections be-
tween recurrent layers to ease gradient flow, and
Nie and Bansal find in an ablation study that using
shortcut connections improves their performance
by over 1% on both development sets.

Embeddings Systems vary reasonably widely
in their approach to input encoding. Yang
et al. and Chen et al. use a combination of GloVe
embeddings (Pennington et al., 2014, not fine
tuned) and character-level convolutional neural
networks (Kim et al., 2016) to extract represen-
tations of words. Balazs et al. also use pre-trained
GloVe embeddings without fine tuning, but report
(contra Chen et al.) that an added character-level
feature extractor does not improve performance.

Vu et al. use pre-trained GloVe word embed-
dings augmented with additional feature vectors.
They create embeddings for part-of-speech (POS),
character level information, and the dependency
relation between a word and its parent, and con-

RepEval 2017 shared task competition results 
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Ablation Analysis

quences as well as the word embedding sequence
to every layer.

Let W = (w1, w2, ..., wn) represent words in
the source sentence. We assume wi 2 Rd is a
word embedding vector which are initialized us-
ing some pre-trained vector embeddings (and is
then fine-tuned end-to-end via the NLI supervi-
sion). Then, the input of ith biLSTM layer at time
t is defined as:

x1t = wt (2)

xit = [wt, h
i�1
t , hi�2

t , ...h1t ] (for i > 1) (3)

where [] represents vector concatenation.
Then, assuming we have m layers of biLSTM,

the final vector representation will be obtained by
applying row-max-pool over the output of the last
biLSTM layer, similar to Conneau et al. (2017).
The final layer is defined as:

Hm = (hm1 , hm2 , ..., hmn ) (4)

v = max(Hm) (5)

where hmi , v 2 R2dm , Hm 2 R2dm⇥n, dm is the
dimension of the hidden state of the last forward
and backward LSTM layers, and v is the final vec-
tor representation for the source sentence (which
is later fed to the NLI classifier).

The closest encoder architecture to ours is that
of Conneau et al. (2017), whose model consists of
a single-layer biLSTM with a max-pooling layer,
which we treat as our starting point. Our exper-
iments (Section 4) demonstrate that our enhance-
ments of the stacked-biRNN with shortcut connec-
tions provide significant gains on top of this base-
line (for both SNLI and Multi-NLI).

2.2 Entailment Classifier

After we obtain the vector representation for the
premise and hypothesis sentence, we apply three
matching methods to the two vectors (i) concate-
nation (ii) element-wise distance and (iii) element-
wise product for these two vectors and then con-
catenate these three match vectors (based on the
heuristic matching presented in Mou et al. (2015)).
Let vp and vh be the vector representations for
premise and hypothesis, respectively. The match-
ing vector is then defined as:

m = [vp, vh, |vp � vh| , vp ⌦ vh] (6)

At last, we feed this final concatenated result m
into a MLP layer and use a softmax layer to make
final classification.

Layers and Dimensions Accuracy
#layers bilstm-dim Matched Mismatched

1 512 72.5 72.9
2 512 + 512 73.4 73.6
1 1024 72.9 72.9
2 512 + 1024 73.7 74.2
1 2048 73.0 73.5
2 512 + 2048 73.7 74.2
2 1024 + 2048 73.8 74.4
2 2048 + 2048 74.0 74.6
3 512 + 1024 + 2048 74.2 74.7

Table 1: Analysis of results for models with dif-
ferent # of biLSTM layers and their hidden state
dimensions.

Matched Mismatched
without any shortcut connection 72.6 73.4
only word shortcut connection 74.2 74.6

full shortcut connection 74.2 74.7

Table 2: Ablation results with and without shortcut
connections.

Word-Embedding Matched Mismatched
fixed 71.8 72.6

fine-tuned 72.7 72.8

Table 3: Ablation results with and without fine-
tuning of word embeddings.

# of MLPs Activation Matched Mismatched
1 tanh 73.7 74.1
2 tanh 73.5 73.6
1 relu 74.1 74.7
2 relu 74.2 74.7

Table 4: Ablation results for different MLP classi-
fiers.

3 Experimental Setup

3.1 Datasets

As instructed in the RepEval Multi-NLI shared
task, we use all of the training data in Multi-
NLI combined with 15% randomly selected sam-
ples from the SNLI training set resampled at each
epoch) as our final training set for all models;
and we use both the cross-domain (‘mismatched’)
and in-domain (‘matched’) Multi-NLI develop-
ment sets for model selection. For the SNLI test
results in Table 5, we train on only the SNLI train-
ing set (and we also verify that the tuning deci-
sions hold true on the SNLI dev set).

3.2 Parameter Settings

We use cross-entropy loss as the training objective
with Adam-based (Kingma and Ba, 2014) opti-

Results for models with different of biLSTM layers and their hidden state dimensions 
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Natural language inference tasks do require some high-level features that 
could be learned after applying multiple bi-RNN layers in sequence



Ablation Analysis

quences as well as the word embedding sequence
to every layer.

Let W = (w1, w2, ..., wn) represent words in
the source sentence. We assume wi 2 Rd is a
word embedding vector which are initialized us-
ing some pre-trained vector embeddings (and is
then fine-tuned end-to-end via the NLI supervi-
sion). Then, the input of ith biLSTM layer at time
t is defined as:

x1t = wt (2)

xit = [wt, h
i�1
t , hi�2

t , ...h1t ] (for i > 1) (3)

where [] represents vector concatenation.
Then, assuming we have m layers of biLSTM,

the final vector representation will be obtained by
applying row-max-pool over the output of the last
biLSTM layer, similar to Conneau et al. (2017).
The final layer is defined as:

Hm = (hm1 , hm2 , ..., hmn ) (4)

v = max(Hm) (5)

where hmi , v 2 R2dm , Hm 2 R2dm⇥n, dm is the
dimension of the hidden state of the last forward
and backward LSTM layers, and v is the final vec-
tor representation for the source sentence (which
is later fed to the NLI classifier).

The closest encoder architecture to ours is that
of Conneau et al. (2017), whose model consists of
a single-layer biLSTM with a max-pooling layer,
which we treat as our starting point. Our exper-
iments (Section 4) demonstrate that our enhance-
ments of the stacked-biRNN with shortcut connec-
tions provide significant gains on top of this base-
line (for both SNLI and Multi-NLI).

2.2 Entailment Classifier

After we obtain the vector representation for the
premise and hypothesis sentence, we apply three
matching methods to the two vectors (i) concate-
nation (ii) element-wise distance and (iii) element-
wise product for these two vectors and then con-
catenate these three match vectors (based on the
heuristic matching presented in Mou et al. (2015)).
Let vp and vh be the vector representations for
premise and hypothesis, respectively. The match-
ing vector is then defined as:

m = [vp, vh, |vp � vh| , vp ⌦ vh] (6)

At last, we feed this final concatenated result m
into a MLP layer and use a softmax layer to make
final classification.

Layers and Dimensions Accuracy
#layers bilstm-dim Matched Mismatched

1 512 72.5 72.9
2 512 + 512 73.4 73.6
1 1024 72.9 72.9
2 512 + 1024 73.7 74.2
1 2048 73.0 73.5
2 512 + 2048 73.7 74.2
2 1024 + 2048 73.8 74.4
2 2048 + 2048 74.0 74.6
3 512 + 1024 + 2048 74.2 74.7

Table 1: Analysis of results for models with dif-
ferent # of biLSTM layers and their hidden state
dimensions.

Matched Mismatched
without any shortcut connection 72.6 73.4
only word shortcut connection 74.2 74.6

full shortcut connection 74.2 74.7

Table 2: Ablation results with and without shortcut
connections.

Word-Embedding Matched Mismatched
fixed 71.8 72.6

fine-tuned 72.7 72.8

Table 3: Ablation results with and without fine-
tuning of word embeddings.

# of MLPs Activation Matched Mismatched
1 tanh 73.7 74.1
2 tanh 73.5 73.6
1 relu 74.1 74.7
2 relu 74.2 74.7

Table 4: Ablation results for different MLP classi-
fiers.

3 Experimental Setup

3.1 Datasets

As instructed in the RepEval Multi-NLI shared
task, we use all of the training data in Multi-
NLI combined with 15% randomly selected sam-
ples from the SNLI training set resampled at each
epoch) as our final training set for all models;
and we use both the cross-domain (‘mismatched’)
and in-domain (‘matched’) Multi-NLI develop-
ment sets for model selection. For the SNLI test
results in Table 5, we train on only the SNLI train-
ing set (and we also verify that the tuning deci-
sions hold true on the SNLI dev set).

3.2 Parameter Settings

We use cross-entropy loss as the training objective
with Adam-based (Kingma and Ba, 2014) opti-

Results with and without shortcut connections. 
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Main performance gain from shortcut property comes from 
shortcut-connection for word-embedding



Ablation Analysis

quences as well as the word embedding sequence
to every layer.

Let W = (w1, w2, ..., wn) represent words in
the source sentence. We assume wi 2 Rd is a
word embedding vector which are initialized us-
ing some pre-trained vector embeddings (and is
then fine-tuned end-to-end via the NLI supervi-
sion). Then, the input of ith biLSTM layer at time
t is defined as:

x1t = wt (2)

xit = [wt, h
i�1
t , hi�2

t , ...h1t ] (for i > 1) (3)

where [] represents vector concatenation.
Then, assuming we have m layers of biLSTM,

the final vector representation will be obtained by
applying row-max-pool over the output of the last
biLSTM layer, similar to Conneau et al. (2017).
The final layer is defined as:

Hm = (hm1 , hm2 , ..., hmn ) (4)

v = max(Hm) (5)

where hmi , v 2 R2dm , Hm 2 R2dm⇥n, dm is the
dimension of the hidden state of the last forward
and backward LSTM layers, and v is the final vec-
tor representation for the source sentence (which
is later fed to the NLI classifier).

The closest encoder architecture to ours is that
of Conneau et al. (2017), whose model consists of
a single-layer biLSTM with a max-pooling layer,
which we treat as our starting point. Our exper-
iments (Section 4) demonstrate that our enhance-
ments of the stacked-biRNN with shortcut connec-
tions provide significant gains on top of this base-
line (for both SNLI and Multi-NLI).

2.2 Entailment Classifier

After we obtain the vector representation for the
premise and hypothesis sentence, we apply three
matching methods to the two vectors (i) concate-
nation (ii) element-wise distance and (iii) element-
wise product for these two vectors and then con-
catenate these three match vectors (based on the
heuristic matching presented in Mou et al. (2015)).
Let vp and vh be the vector representations for
premise and hypothesis, respectively. The match-
ing vector is then defined as:

m = [vp, vh, |vp � vh| , vp ⌦ vh] (6)

At last, we feed this final concatenated result m
into a MLP layer and use a softmax layer to make
final classification.

Layers and Dimensions Accuracy
#layers bilstm-dim Matched Mismatched

1 512 72.5 72.9
2 512 + 512 73.4 73.6
1 1024 72.9 72.9
2 512 + 1024 73.7 74.2
1 2048 73.0 73.5
2 512 + 2048 73.7 74.2
2 1024 + 2048 73.8 74.4
2 2048 + 2048 74.0 74.6
3 512 + 1024 + 2048 74.2 74.7

Table 1: Analysis of results for models with dif-
ferent # of biLSTM layers and their hidden state
dimensions.

Matched Mismatched
without any shortcut connection 72.6 73.4
only word shortcut connection 74.2 74.6

full shortcut connection 74.2 74.7

Table 2: Ablation results with and without shortcut
connections.

Word-Embedding Matched Mismatched
fixed 71.8 72.6

fine-tuned 72.7 72.8

Table 3: Ablation results with and without fine-
tuning of word embeddings.

# of MLPs Activation Matched Mismatched
1 tanh 73.7 74.1
2 tanh 73.5 73.6
1 relu 74.1 74.7
2 relu 74.2 74.7

Table 4: Ablation results for different MLP classi-
fiers.

3 Experimental Setup

3.1 Datasets

As instructed in the RepEval Multi-NLI shared
task, we use all of the training data in Multi-
NLI combined with 15% randomly selected sam-
ples from the SNLI training set resampled at each
epoch) as our final training set for all models;
and we use both the cross-domain (‘mismatched’)
and in-domain (‘matched’) Multi-NLI develop-
ment sets for model selection. For the SNLI test
results in Table 5, we train on only the SNLI train-
ing set (and we also verify that the tuning deci-
sions hold true on the SNLI dev set).

3.2 Parameter Settings

We use cross-entropy loss as the training objective
with Adam-based (Kingma and Ba, 2014) opti-

Results for different MLP classifiers 
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Rectified linear unit is better than hyperbolic tangent function in this task



Results on SNLI and MultiNLI

Model

Accuracy

SNLI Multi-NLI Matched Multi-NLI Mismatched

CBOW (Williams et al., 2017) 80.6 65.2 64.6
biLSTM Encoder (Williams et al., 2017) 81.5 67.5 67.1

300D Tree-CNN Encoder (Mou et al., 2015) 82.1 – –
300D SPINN-PI Encoder (Bowman et al., 2016) 83.2 – –
300D NSE Encoder (Munkhdalai and Yu, 2016) 84.6 – –
biLSTM-Max Encoder (Conneau et al., 2017) 84.5 – –

Our biLSTM-Max Encoder 85.2 71.7 71.2
Our Shortcut-Stacked Encoder 86.1 74.6 73.6

Table 5: Final Test Results on SNLI and Multi-NLI datasets.

mization with 32 batch size. The starting learning
rate is 0.0002 with half decay every two epochs.
The number of hidden units for MLP in classifier
is 1600. Dropout layer is also applied on the out-
put of each layer of MLP, with dropout rate set to
0.1. We used pre-trained 300D Glove 840B vec-
tors (Pennington et al., 2014) to initialize the word
embeddings. Tuning decisions for word embed-
ding training strategy, the hyperparameters of di-
mension and number of layers for biLSTM, and
the activation type and number of layers for MLP,
are all explained in Section 4.

4 Results and Analysis

4.1 Ablation Analysis Results

We now investigate the effectiveness of each of the
enhancement components in our overall model.
These ablation results are shown in Tables 1, 2, 3
and 4, all based on the Multi-NLI development
sets. Finally, Table 5 shows results for different
encoders on SNLI and Multi-NLI test sets.

First, Table 1 shows the performance changes
for different number of biLSTM layers and their
varying dimension size. The dimension size of
a biLSTM layer is referring to the dimension of
the hidden state for both the forward and back-
ward LSTM-RNNs. As shown, each added layer
model improves the accuracy and we achieve a
substantial improvement in accuracy (around 2%)
on both matched and mismatched settings, com-
pared to the single-layer biLSTM in Conneau et al.
(2017). We only experimented with up to 3 lay-
ers with 512, 1024, 2048 dimensions each, so the
model still has potential to improve the result fur-
ther with a larger dimension and more layers.

Next, in Table 2, we show that the shortcut
connections among the biLSTM layers is also
an important contributor to accuracy improve-
ment (around 1.5% on top of the full 3-layered
stacked-RNN model). This demonstrates that sim-
ply stacking the biLSTM layers is not sufficient

to handle a complex task like Multi-NLI and it is
significantly better to have the higher layer con-
nected to both the output and the original input of
all the previous layers (note that Table 1 results are
based on multi-layered models with shortcut con-
nections).

Next, in Table 3, we show that fine-tuning the
word embeddings also improves results, again for
both the in-domain task and cross-domain tasks
(the ablation results are based on a smaller model
with a 128+256 2-layer biLSTM). Hence, all our
models were trained with word embeddings being
fine-tuned. The last ablation in Table 4 shows that
a classifier with two layers of relu is preferable
than other options. Thus, we use that setting for
our strongest encoder.

4.2 Multi-NLI and SNLI Test Results

Finally, in Table 5, we report the test results
for MNLI and SNLI. First for Multi-NLI, we
improve substantially over the CBOW and biL-
STM Encoder baselines reported in the dataset pa-
per (Williams et al., 2017). We also show that
our final shortcut-based stacked encoder achieves
around 3% improvement as compared to the 1-
layer biLSTM-Max Encoder in the second last
row (using the exact same classifier and optimizer
settings). Our shortcut-encoder was also the top
singe-model (non-ensemble) result on the EMNLP
RepEval Shared Task leaderboard.

Next, for SNLI, we compare our shortcut-
stacked encoder with the current state-of-the-art
encoders from the SNLI leaderboard (https://
nlp.stanford.edu/projects/snli/).
We also compare to the recent biLSTM-Max
Encoder of Conneau et al. (2017), which served
as our model’s 1-layer starting point.1 The results
indicate that ‘Our Shortcut-Stacked Encoder’ sur-

1Note that the ‘Our biLSTM-Max Encoder’ results in the
second-last row are obtained using our reimplementation of
the Conneau et al. (2017) model; our version is 0.7% better,
likely due to our classifier and optimizer settings.

Test Results on SNLI and Multi-NLI datasets
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Our encoding-based model achieves new state-of-the-art on SNLI



Thoughts about Max-pooling

biLSTM

w1 w2 w3 w4 w5 w6 w7 w8

biLSTM

biLSTM

Each column in the final vector representation corresponds to each 
word in the source sentence and its surroundings/context
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Thoughts about Max-pooling

Column-wise matching between final vector representation of the two 
sentence corresponds to word matching between two sentence à similar to 
attention between two sentences
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Thoughts about Max-pooling
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Max-pooling vs. Attention

Selectively combining information from each item of the source 
into a compact representation.

Max-poolingSoft-attention

ei = f(wi, ...)

a = softmax(e)

v =
X

aihi
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We are trying better/advanced max-pooling methods currently.



Vector Rep (1-NN Genre Accuracy) 

• Learned representations are not genre-agnostic
• Potential ability to handle genre classification task

Table shows the percentage of times the first nearest neighbor belongs to the same genre 
as the sample sentence. 

• TENSE DIFFERENCE: Whether the two sen-
tences use different tenses on any verbs.
Example: P: Does she like what she does?
H: Does she like what she is doing?

• QUANTITY/TIME REASONING: Whether un-
derstanding the pair requires quantity or time
reasoning.
Example: P: The vice chairman joined the
conference shortly before 10:00; the secre-
tary, shortly before 10:30. H: The secretary
joined before the vice chairman.

• WORD OVERLAP: Whether the two sen-
tences share more than 70% of their tokens.
Example: P: Let’s look for paua shells! H:
Let’s look for sticks.

• LONG SENTENCE: Whether the premise or
hypothesis is longer than 30 or 16 words re-
spectively.
Example: P: As invested with its dignity,
since the seventeenth century just as the
crown has been used for the monarch, or the
oval office has come to stand for the president
of the United States. H: Nobody in Britain
associates the crown with the monarchy.

Table 4 shows model results on tagged ex-
amples for the BiLSTM baseline and for the
three systems for which we were able to ac-
quire example-by-example development set re-
sults (submission of these results was optional).
Among those tags that are frequent enough to
yield clearly interpretable numbers, none indicates
a subset of the corpus that is dramatically harder
or easier for the submitted models than is the cor-
pus overall. This suggests that—as is typical with
neural network models—these models do not rely
strongly on any particular structural properties of
the input texts to the exclusion of others.

We note that the submitted systems that use
intra-attention (the three shown) do relatively well
on the LONG SENTENCE and NEGATION tags.
This technique likely helps the encoders to recover
the structures of long sentences and to correctly
identify the scope of instances of negation. We
also note that all systems do relatively poorly on
the QUANTITY/TIME REASONING section, sug-
gesting that these simple sentence feature extrac-
tors are not well situated to learn quantitative rea-
soning in this setting.

Authors 1-NN Genre Accuracy

Chen et al. 67.3%
Nie and Bansal 74.0%
Balazs et al. 69.2%
Vu et al. 67.0%
Yang et al. 54.7%

Table 5: A thousand sentences are randomly sam-
pled from the matched test set and their pairwise
distances to all sentences in the test set (premises
and hypotheses) are calculated. This table shows
the percentage of times the first nearest neighbor
belongs to the same genre as the sample sentence.

6.2 Nearest Neighbors

Test Set Sentences The competition participants
were asked to submit sentence vectors for all
the premise and hypothesis sentences in the test
sets. We randomly sample 1,000 sentences from
the matched test set and, using cosine similarity,
calculate their pairwise distances against all sen-
tences in the matched test set. Table 5 shows the
percentage of times the first nearest neighbor be-
longs to the same genre as the chosen sentence.
All models score fairly highly on this metric, sug-
gesting that the learned representations are not
genre-agnostic, despite their effectiveness in un-
seen genres. The models with higher percentage
accuracy on the NLI task (see Table 3) show bet-
ter performance on this metric as well, suggesting
that this genre clustering property correlates with
the overall quality of the metric space that each
model uses to represent sentences.

The better models are also more interpretable.
Table 6 shows example sentences and their three
nearest neighbors for all models. It appears
that entity identity is important for the Nie and
Bansal model, though not it a way that is tied to
syntactic position. For the Critics loved Merchant-
Ivory example, we see matches to critics. In the
Students love the rich culture example, we simi-
larly see many matches to school and love. Since
for each premise sentence in the MultiNLI corpus,
there are 3 associated hypothesis sentences, it’s
not surprising to see that the first nearest neighbor
is often one of these associated sentences, like in
the Critics example where the first nearest neigh-
bor for all systems is the premise sentence. We
found that for some examples, the better perform-
ing systems like Nie and Bansal’s had all three as-
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Vector Rep (Heatmap) 

Sentences tend to be more similar to one another if they have more structural features in 
common.

Figure 1: A heatmap showing the cosine similarity between sentence vectors. The vectors were rendered
by the Nie and Bansal model. The plots for other systems are very similar.

sociated sentences as their top three nearest neigh-
bors.

Probe Sentences During the competition, we
additionally provided a set of automatically gen-
erated probe sentences meant to aid error analysis.
These probe sentences are produced to vary along
dimensions relevant to probing for semantic role
and negation information. We asked submitting
teams to supply vectors for these sentences in ad-
dition to those in the test set. Figure 1 shows the
cosine similarity between a subset of these sen-
tence vectors rendered by Nie and Bansal’s (2017)
system. We find that all systems (except that of
Balazs et al., who did not submit these vectors)
show similar behavior on these sentences, and we
do not observe a clear correlation between behav-
ior here and model performance. Perhaps unsur-
prisingly, we observe that sentences tend to be
more similar to one another the more structural
features they have in common. We observe this

clearly for negation, identity of the subject, and
tense, though continuous tenses are not reliably
differentiated from others.

7 Conclusion

We find that BiLSTM-based models with max
pooling or intra-sentence attention represent a
popular and effective strategy for sentence encod-
ing, and that systems based on this technique per-
form very well at the task of NLI.

We note that all submitted systems performed
reasonably well across the many subsets of the
data reflected by our supplementary tags, suggest-
ing that none of these models exploit any par-
ticular narrow feature of the task or data to per-
form well. We also note that model performance
does not vary much between the matched and mis-
matched sections of the test set. This means that
submitted systems are likely capturing reasonably
general strategies for extracting representations of
meaning from text. As the systems get better, and

A heatmap
showing the 
cosine similarity 
between 
sentence 
vectors. 
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