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Motivation

(Human education testing: SAT, GRE, etc.)

• Questions & answers are designed by educators
• Scores are used as certifications or qualifications
• Most questions are objective

Human Education Natural Language Processing

(Model evaluation & benchmarking)

• Task data are mostly collected via crowdsource
• Scores are used for model ranking
• Many NLP tasks can be subjective

crowdsource train

test
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Motivation

Human Education Natural Language Processing

Testing is mostly about understanding 
of a well-defined concept or knowledge.

Correct Labels are usually authoritative.

Many NLP tasks depend on the 
unspecified pragmatic context, calculation 

of plausibility, etc.

Gold Label can often be debatable.
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Motivation

Human Education Natural Language Processing

Testing is mostly about understanding 
of a well-defined concept or knowledge.

Correct Labels are usually authoritative.

Many NLP tasks depend on the 
unspecified pragmatic context, calculation 

of plausibility, etc.

Gold Label can often be debatable.

To understand collective human opinions on NLU data, 
we did case studies on Natural Language Inference and Abductive Inference.
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Natural Language Inference

Is the hypothesis entailed or contradicted by the premise?

Normal example in SNLI
Premise A man inspects the uniform of a figure in some East Asian country.

Hypothesis The man is sleeping.
Label Entailment, Neutral, Contradiction
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Natural Language Inference

Is the hypothesis entailed or contradicted by the premise?

Normal example in SNLI

Subtle example in MNLI

Premise A man inspects the uniform of a figure in some East Asian country.
Hypothesis The man is sleeping.

Label Entailment, Neutral, Contradiction

Premise There are a number of expensive jewelry and other duty-free shops, all with goods priced 
in US dollars (duty-free goods must always be paid for in foreign currency).

Hypothesis You can pay using the US dollar when buying goods from the duty-free shops.
Label Entailment? Contradiction? Neutral?

Contradiction: A duty-free shop can only sell duty-free goods and you can only pay in foreign currency, assuming local is US. 
Entailment: A duty-free shop can sell things other than duty-free goods for US dollar.
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Abductive Commonsense Inference

Which of the two hypotheses is more likely to cause Observation-Beginning to turn into Observation-Ending?
Normal example in Abductive NLI

Observation-B It was a very hot summer day.
Hypothesis-1 He decided to run in the heat.
Hypothesis-2 He drank a glass of ice cold water.

Observation-E He felt much better!
Label Hypothesis-2
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Abductive Commonsense Inference

Which of the two hypotheses is more likely to cause Observation-Beginning to turn into Observation-Ending?
Normal example in Abductive NLI

Subtle example in Abductive NLI

Observation-B It was a very hot summer day.
Hypothesis-1 He decided to run in the heat.
Hypothesis-2 He drank a glass of ice cold water.

Observation-E He felt much better!
Label Hypothesis-2

Observation-B Amy and her friends were out at 3 AM.
Hypothesis-1 They started getting followed by a policeman, ran, and hid behind a building.
Hypothesis-2 The decided to break into the football field. When suddenly they saw a flashlight coming towards 

them. They all started running for the bleachers.
Observation-E They stayed there breathing hard, and praying they hadn't been seen.

Label Hypothesis-1 ? Hypothesis 2
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Gold-label Practice is Worrisome
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Gold-label Practice is Worrisome

Evaluating model ability to recover human opinions distribution is also (even more) important.
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Collective HumAn OpinionS
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Dataset

Collective HumAn OpinionS

ChaosNLI

100 Annotations per Example

A Total of 464,500 Annotations

Abductive NLI 
(ChaosNLI-Alpha)

Stanford NLI
(ChaosNLI-S)

Multi-NLI
(ChaosNLI-M)

Count 1,532 1,514 1,599
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Collection

Challenge (Human Opinions)
Inter-Annotation-Agreement is not applicable

Quality Control
• Onboarding Test
• Training Phrase
• Performance Tracking
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Human Agreement Distribution

100 annotations to calculate label distribution entropy.

Figure 3: Histogram of entropy of estimated distribution over human annotations on ChaosNLI-↵, ChaosNLI-S,
ChaosNLI-M.

Data # Examples Change rate (%)

ChaosNLI-↵ 1,532 10.64
ChaosNLI-S 1,514 (10k) 24.97 (3.78)
ChaosNLI-M 1,599 (10k) 31.77 (5.08)

Table 2: Data Statistics. ‘# Examples’ refers to the to-
tal number of examples. ‘Change rate’ refers to the
percentage that the old majority label is different from
the new majority label. The number in the parentheses
shows the size of the entire original SNLI and MNLI-
m development set and the percentage of label changes
with respect to the entire set.

(10%, 25%, and 30% for ChaosNLI-↵, ChaosNLI-
S, and ChaosNLI-M, respectively) of the data. The
label statistics for individual datasets can be found
in Appendix D.

Examples. Table 3 and Table 4 show some col-
lected NLI examples that either have low levels of
human agreements or have different majority la-
bels as opposed to the old ground truth labels. We
can see that the resultant labels we collected not
only provide more fine-grained human judgements
but also give a new majority label that is better at
presenting the prevailing human opinion. More-
over, there indeed exist different but plausible in-
terpretations for the examples that are of low-level
of human agreements and the discrepancy is not
just noise but presents the distribution over human
judgements with “higher resolutions”. This is con-
sistent with the finding in Pavlick and Kwiatkowski
(2019).

Entropy Distribution. To further investigate the
human uncertainty in our collected labels, we show
the histogram of the entropy of label distribution
for ChaosNLI-↵, ChaosNLI-S and ChaosNLI-M
in Figure 3. The label distribution is approximated
by the 100 collected annotations. The entropy is
calculated with H (p) = �

P
i2C pi log(pi) and

pi = niP
j2C nj

, where C is the label category set
and ni is the number of labels for category i. The

entropy value gives a measure for the level of un-
certainty or agreement among human judgements,
where high entropy suggests low level of agreement
and vice versa.

The histogram for the ChaosNLI-↵ shows a dis-
tribution that is similar to a U-Shaped distribution.
This indicates that naturally occurring examples in
ChaosNLI-↵ are either highly certain or uncertain
among human judgements. In ChaosNLI-S and
ChaosNLI-M, the distribution shows only one ap-
parent peak; and the distribution for ChaosNLI-M
is slightly skewed towards higher entropy direc-
tion. As described in Section 3.1, ChaosNLI-S and
ChaosNLI-M are subsets of SNLI and MNLI-m
development that are of low-level of human agree-
ments, it could be expected that the majority of
naturally occurring SNLI and MNLI data would
also have low entropy, which will form another
peak around the beginning of the x-axis resulting a
U-like shape similar to ChaosNLI-↵.7

5 Analysis of Model Predictions

In Section 4, we discussed the statistics and some
examples for the new annotations. The observa-
tion naturally raises two questions regarding the
development of NLP models: (1) whether the state-
of-the-art models are able to capture this distribu-
tion over human opinions; and (2) how the level
of human agreements will affect the performance
of the models. Hence, we investigate these ques-
tions in this section. Section 5.1 and 5.2 state our
experimental choices. Section 5.3 discusses the
results regarding the extent to which the softmax
distributions produced by state-of-the-art models
trained on the dataset reflects similar distributions
over human annotations. Section 5.4 demonstrate
the surprising influence of human agreements on
the model performances.

7In our pilot study, we collected 50 labels for 100 exam-
ples of SNLI where all five original annotators agreed with
each other, the average entropy of those is 0.31. The average
entropy of examples on ChaosNLI-S is 0.80.
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Analysis of Model Predictions
Softmax Output vs. Human Label Distribution

Context Hypothesis Old Labels New Labels Source Typemajority and individual labels

With the sun rising, a person is gliding with a huge
parachute attached to them.

The person is falling to safety with the parachute Entailment
E E E N N

Entailment
E(50) N(50)

SNLI Low agreements

A woman in a tan top and jeans is sitting on a
bench wearing headphones.

A woman is listening to music. Entailment
E E N N E

Neutral
N(93) E(7)

SNLI Majority changed

A group of guys went out for a drink after work,
and sitting at the bar was a real a 6 foot blonde
with a fabulous face and figure to match.

The men didn’t appreciate the figure of the blonde
woman sitting at the bar.

Contradiction
C N N C C

Contradiction
C(56) N(44)

MNLI Low agreements

In the other sight he saw Adrin’s hands cocking
back a pair of dragon-hammered pistols.

He had spotted Adrin preparing to fire his pistols. Neutral
N E N N E

Entailment
E(94) N(5) C(1)

MNLI Majority changed

Table 3: Examples from ChaosNLI-S and ChaosNLI-M development set. ‘Old Labels’ is the 5 label annotations
from original dataset. ‘New Labels’ refers to the newly collected 100 label annotations. Superscript indicates the
frequency of the label.

Observation-1 Sadie was on a huge hike.
Observation-2 Luckily she pushed herself and managed to reach the peak.

Hypothesis-1 Sadie almost gave down mid way.
Hypothesis-2 Sadie wanted to go to the top.

Old Label Hypothesis-2
New Labels Hypothesis-1(58) Hypothesis-2(42)

Observation-1 Uncle Jock couldn’t believe he was rich.
Observation-2 Jock lived the good life for a whole year, until he was poor again.

Hypothesis-1 He went to town and spent on extravagant things.
Hypothesis-2 Jock poorly managed his finances.

Old Label Hypothesis-1
New Labels Hypothesis-1(48) Hypothesis-2(52)

Table 4: Examples from the collected ChaosNLI-↵ de-
velopment set. The task asks which of the two hypoth-
esis is more likely to cause Observation-1 to turn into
Observation-2. Superscript indicates the frequency of
the label. Majority labels were marked in bold.

5.1 Models and Setup

Following the pretraining-then-finetuning trend,
we focus our experiments on large-scale language
pretraining models. We studied BERT (Devlin
et al., 2019), XLNet (Yang et al., 2019), and
RoBERTa (Liu et al., 2019) since they are consid-
ered to be the state-of-the-art models for learning
textual representations and have been used for a
variety of downstream tasks. We experimented on
both the base and the large versions of these models,
in order to analyze the parameter size factor. Ad-
ditionally, we include BART (Lewis et al., 2020),
ALBERT (Lan et al., 2019), and DistilBERT (Sanh
et al., 2019) in the experiments. ALBERT is de-
signed to reduce parameters of BERT by cross-
layer parameter sharing and decomposing embed-
ding. DistilBERT aims to compress BERT with
knowledge distillation. BART is a denoising au-
toencoder for pretraining seq-to-seq models.

For NLI, we trained the models on a combined
training set of SNLI and MNLI which contains over
900k NLI pairs. We used the best hyper-parameters
chosen by their original authors. For ↵NLI, we
trained the models on ↵NLI training set (169,654

examples). The hyper-parameters for ↵NLI were
tuned with results on ↵NLI development set. De-
tails of the hyper-parameters are in Appendix B.

5.2 Evaluation and Metrics
As formulated in Equation 4, we used the 100 col-
lected annotations for each example to approximate
the human label distributions for each example. In
order to examine to what extent the current models
are capable of capturing the collective human opin-
ions, we compared the human label distributions
with the softmax outputs of the neural networks
following Pavlick and Kwiatkowski (2019).

We used Jensen-Shannon Distance (JSD) as the
primary measure of the distance between the soft-
max multinomial distribution of the models and
the distributions over human labels because JSD is
a metric function based on a mathematical defini-
tion (Endres and Schindelin, 2003). It’s symmetric
and bounded with the range [0, 1], whereas the
Kullback–Leibler (KL) divergence (Kullback and
Leibler, 1951; Kullback, 1997) does not have these
two properties. We also used KL as a complemen-
tary measure. The two metrics are calculated as:

KL (pkq) =
X

i2C
pi log

✓
pi
qi

◆
(1)

JSD (pkq) =
r

1

2
(KL (pkm) + KL (qkm)) (2)

where p is the estimated human distribution, q is
model softmax outputs, and m = 1

2(p+ q).

5.3 Main Results
Table 5 reports the main results regarding the dis-
tance between model softmax distribution and esti-
mated human label distribution. In addition to the
models, we also show the results for the chance
baseline (the first row) and the results for estimated

p is the estimated human distribution
q is model softmax outputs
m = (p + q) / 2
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Analysis of Model Predictions
Softmax Output vs. Human Label Distribution

Model ChaosNLI-↵ ChaosNLI-S ChaosNLI-M

JSD# KL# Acc." (old/new) JSD# KL# Acc." (old/new) JSD# KL# Acc." (old/new)

Chance 0.3205 0.406 0.5098/0.5052 0.383 0.5457 0.4472/0.5370 0.3023 0.3559 0.4509/0.4634

BERT-b 0.3209 3.7981 0.6527/0.6534 0.2345 0.481 0.7008/0.7292 0.3055 0.7204 0.5991/0.5591
XLNet-b 0.2678 1.0209 0.6743/0.6867 0.2331 0.5121 0.7114/0.7365 0.3069 0.7927 0.6373/0.5891
RoBERTa-b 0.2394 0.8272 0.7154/0.7396 0.2294 0.5045 0.7272/0.7536 0.3073 0.7807 0.6391/0.5922

BERT-l 0.3055 3.7996 0.6802/0.6821 0.23 0.5017 0.7266/0.7384 0.3152 0.8449 0.6123/0.5691
XLNet-l 0.2282 1.8166 0.814/0.8133 0.2259 0.5054 0.7431/0.7807 0.3116 0.8818 0.6742/0.6185
RoBERTa-l 0.2128 1.3898 0.8531/0.8368 0.221 0.4937 0.749/0.7867 0.3112 0.8701 0.6742/0.6354

BART 0.2215 1.5794 0.8185/0.814 0.2203 0.4714 0.7424/0.7827 0.3165 0.8845 0.6635/0.5922
ALBERT 0.2208 2.9598 0.8440/0.8473 0.235 0.5342 0.7153/0.7814 0.3159 0.862 0.6485/0.5897
DistilBert 0.3101 1.0345 0.592/0.607 0.2439 0.4682 0.6711/0.7021 0.3133 0.6652 0.5472/0.5103

Est. Human 0.0421 0.0373 0.885/0.97 0.0614 0.0411 0.775/0.94 0.0695 0.0381 0.66/0.86

Table 5: Model Performances for JSD, KL, and Accuracy on majority label. # indicates smaller value is better.
" indicates larger value is better. For each column, the best values are in bold and the second best values are
underlined. “-b” and “-l” in the Model column denote “-base” and “-large”, respectively.

human performance (the last row). The chance
baseline gives each label equal probability when
calculating the JSD and KL measures. The ac-
curacy of the chance baseline directly shows the
proportion of the examples with the majority la-
bel in a specific evaluation set. To estimate the
human performance, we employed a new set of
annotators to collect another 100 labels for a set of
randomly sampled 200 examples on ChaosNLI-↵,
ChaosNLI-S and ChaosNLI-M, respectively. For
a better estimation of ‘collective’ human perfor-
mance, we ensure that the new set of annotators
employed for estimating human performance is
disjoint from the set of annotators employed for
the normal label collection.8 In what follows, we
discuss the results.

Significant difference exists between model out-
puts and human opinions. The most salient in-
formation we can get is that there are large gaps
between model outputs and human opinions. To
be specific, the estimated collective human perfor-
mance gives JSD and KL scores far below 0.1 on all
three sets. However, the best JSD achieved by the
models is larger than 0.2 and the best KL achieved
by the models barely goes below 0.5 across the
table. The finding can be somewhat foreseeable
since none of the models are designed to capture
collective human opinions and suggests room for
improvement.

8The estimation of collective human performance can also
be viewed as calculating the JSD and KL between two disjoint
sets of 100 human opinions.

Even chance baseline is hard to beat. What is
more surprising is that a number of these state-of-
the-art models can barely outperform and some-
times even perform worse than the chance baseline
w.r.t. JSD and KL scores. On ChaosNLI-M, all the
models yield similar JSD scores to the chance base-
line and are beaten by it on KL. On ChaosNLI-↵,
BERT-base performs worse than the chance base-
line on JSD and the scores of KL by all the models
are way higher than that of the chance baseline.
This hints that capturing human label distribution
is a common blind spot for many models.

There is no apparent correlation between the
accuracy and the two divergence scores. On
both ChaosNLI-S and ChaosNLI-M, DistilBERT
gives the best KL scores despite the fact that it
obtains the lowest accuracy on the majority label.
BERT-base gives the best JSD while having the sec-
ond lowest accuracy on ChaosNLI-M. RoBERTa-
large gives the highest accuracy on ChaosNLI-S
and ChaosNLI-M, and the second highest accuracy
on ChaosNLI-↵ but it only obtains the lowest JSD
on ChaosNLI-↵. The best JSD score on ChaosNLI-
↵ is achieved by BART but it fails to give the best
accuracy. This hints that the ability required to
model the distribution of human labels differs from
that required to predict the majority label and per-
form well on the accuracy metric.

Large models are not always better. Direct
comparison between base and large models for
BERT, XLNet, and RoBERTa reveals that large
models cannot beat base models on ChaosNLI-↵
and ChaosNLI-M on KL scores. Moreover, on

Significant difference exists between model outputs and human opinions.
Human performance is estimated by comparing 100 human labels and another 100 human labels.
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Analysis of Model Predictions
Softmax Output vs. Human Label Distribution

Model ChaosNLI-↵ ChaosNLI-S ChaosNLI-M
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human performance (the last row). The chance
baseline gives each label equal probability when
calculating the JSD and KL measures. The ac-
curacy of the chance baseline directly shows the
proportion of the examples with the majority la-
bel in a specific evaluation set. To estimate the
human performance, we employed a new set of
annotators to collect another 100 labels for a set of
randomly sampled 200 examples on ChaosNLI-↵,
ChaosNLI-S and ChaosNLI-M, respectively. For
a better estimation of ‘collective’ human perfor-
mance, we ensure that the new set of annotators
employed for estimating human performance is
disjoint from the set of annotators employed for
the normal label collection.8 In what follows, we
discuss the results.

Significant difference exists between model out-
puts and human opinions. The most salient in-
formation we can get is that there are large gaps
between model outputs and human opinions. To
be specific, the estimated collective human perfor-
mance gives JSD and KL scores far below 0.1 on all
three sets. However, the best JSD achieved by the
models is larger than 0.2 and the best KL achieved
by the models barely goes below 0.5 across the
table. The finding can be somewhat foreseeable
since none of the models are designed to capture
collective human opinions and suggests room for
improvement.

8The estimation of collective human performance can also
be viewed as calculating the JSD and KL between two disjoint
sets of 100 human opinions.

Even chance baseline is hard to beat. What is
more surprising is that a number of these state-of-
the-art models can barely outperform and some-
times even perform worse than the chance baseline
w.r.t. JSD and KL scores. On ChaosNLI-M, all the
models yield similar JSD scores to the chance base-
line and are beaten by it on KL. On ChaosNLI-↵,
BERT-base performs worse than the chance base-
line on JSD and the scores of KL by all the models
are way higher than that of the chance baseline.
This hints that capturing human label distribution
is a common blind spot for many models.

There is no apparent correlation between the
accuracy and the two divergence scores. On
both ChaosNLI-S and ChaosNLI-M, DistilBERT
gives the best KL scores despite the fact that it
obtains the lowest accuracy on the majority label.
BERT-base gives the best JSD while having the sec-
ond lowest accuracy on ChaosNLI-M. RoBERTa-
large gives the highest accuracy on ChaosNLI-S
and ChaosNLI-M, and the second highest accuracy
on ChaosNLI-↵ but it only obtains the lowest JSD
on ChaosNLI-↵. The best JSD score on ChaosNLI-
↵ is achieved by BART but it fails to give the best
accuracy. This hints that the ability required to
model the distribution of human labels differs from
that required to predict the majority label and per-
form well on the accuracy metric.

Large models are not always better. Direct
comparison between base and large models for
BERT, XLNet, and RoBERTa reveals that large
models cannot beat base models on ChaosNLI-↵
and ChaosNLI-M on KL scores. Moreover, on

Even chance baseline is hard to beat.
Chance baseline is using uniform distribution on the labels.
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Analysis of Model Predictions
Softmax Output vs. Human Label Distribution

Model ChaosNLI-↵ ChaosNLI-S ChaosNLI-M

JSD# KL# Acc." (old/new) JSD# KL# Acc." (old/new) JSD# KL# Acc." (old/new)

Chance 0.3205 0.406 0.5098/0.5052 0.383 0.5457 0.4472/0.5370 0.3023 0.3559 0.4509/0.4634

BERT-b 0.3209 3.7981 0.6527/0.6534 0.2345 0.481 0.7008/0.7292 0.3055 0.7204 0.5991/0.5591
XLNet-b 0.2678 1.0209 0.6743/0.6867 0.2331 0.5121 0.7114/0.7365 0.3069 0.7927 0.6373/0.5891
RoBERTa-b 0.2394 0.8272 0.7154/0.7396 0.2294 0.5045 0.7272/0.7536 0.3073 0.7807 0.6391/0.5922

BERT-l 0.3055 3.7996 0.6802/0.6821 0.23 0.5017 0.7266/0.7384 0.3152 0.8449 0.6123/0.5691
XLNet-l 0.2282 1.8166 0.814/0.8133 0.2259 0.5054 0.7431/0.7807 0.3116 0.8818 0.6742/0.6185
RoBERTa-l 0.2128 1.3898 0.8531/0.8368 0.221 0.4937 0.749/0.7867 0.3112 0.8701 0.6742/0.6354

BART 0.2215 1.5794 0.8185/0.814 0.2203 0.4714 0.7424/0.7827 0.3165 0.8845 0.6635/0.5922
ALBERT 0.2208 2.9598 0.8440/0.8473 0.235 0.5342 0.7153/0.7814 0.3159 0.862 0.6485/0.5897
DistilBert 0.3101 1.0345 0.592/0.607 0.2439 0.4682 0.6711/0.7021 0.3133 0.6652 0.5472/0.5103

Est. Human 0.0421 0.0373 0.885/0.97 0.0614 0.0411 0.775/0.94 0.0695 0.0381 0.66/0.86

Table 5: Model Performances for JSD, KL, and Accuracy on majority label. # indicates smaller value is better.
" indicates larger value is better. For each column, the best values are in bold and the second best values are
underlined. “-b” and “-l” in the Model column denote “-base” and “-large”, respectively.

human performance (the last row). The chance
baseline gives each label equal probability when
calculating the JSD and KL measures. The ac-
curacy of the chance baseline directly shows the
proportion of the examples with the majority la-
bel in a specific evaluation set. To estimate the
human performance, we employed a new set of
annotators to collect another 100 labels for a set of
randomly sampled 200 examples on ChaosNLI-↵,
ChaosNLI-S and ChaosNLI-M, respectively. For
a better estimation of ‘collective’ human perfor-
mance, we ensure that the new set of annotators
employed for estimating human performance is
disjoint from the set of annotators employed for
the normal label collection.8 In what follows, we
discuss the results.

Significant difference exists between model out-
puts and human opinions. The most salient in-
formation we can get is that there are large gaps
between model outputs and human opinions. To
be specific, the estimated collective human perfor-
mance gives JSD and KL scores far below 0.1 on all
three sets. However, the best JSD achieved by the
models is larger than 0.2 and the best KL achieved
by the models barely goes below 0.5 across the
table. The finding can be somewhat foreseeable
since none of the models are designed to capture
collective human opinions and suggests room for
improvement.

8The estimation of collective human performance can also
be viewed as calculating the JSD and KL between two disjoint
sets of 100 human opinions.

Even chance baseline is hard to beat. What is
more surprising is that a number of these state-of-
the-art models can barely outperform and some-
times even perform worse than the chance baseline
w.r.t. JSD and KL scores. On ChaosNLI-M, all the
models yield similar JSD scores to the chance base-
line and are beaten by it on KL. On ChaosNLI-↵,
BERT-base performs worse than the chance base-
line on JSD and the scores of KL by all the models
are way higher than that of the chance baseline.
This hints that capturing human label distribution
is a common blind spot for many models.

There is no apparent correlation between the
accuracy and the two divergence scores. On
both ChaosNLI-S and ChaosNLI-M, DistilBERT
gives the best KL scores despite the fact that it
obtains the lowest accuracy on the majority label.
BERT-base gives the best JSD while having the sec-
ond lowest accuracy on ChaosNLI-M. RoBERTa-
large gives the highest accuracy on ChaosNLI-S
and ChaosNLI-M, and the second highest accuracy
on ChaosNLI-↵ but it only obtains the lowest JSD
on ChaosNLI-↵. The best JSD score on ChaosNLI-
↵ is achieved by BART but it fails to give the best
accuracy. This hints that the ability required to
model the distribution of human labels differs from
that required to predict the majority label and per-
form well on the accuracy metric.

Large models are not always better. Direct
comparison between base and large models for
BERT, XLNet, and RoBERTa reveals that large
models cannot beat base models on ChaosNLI-↵
and ChaosNLI-M on KL scores. Moreover, on

Large models are not always better. 
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Examples (NLI)

Premise There are a number of expensive jewelry and other duty-free shops, all with goods priced 
in US dollars (duty-free goods must always be paid for in foreign currency).

Hypothesis You can pay using the US dollar when buying goods from the duty-free shops.
Old Labels C, C, E, N, C

New Labels E(51), N(3), C(46)

BERT-large RoBERTa-large XLNet-large BART ALBERT DistilBERT
Entailment 50.03% 95.04% 91.80% 95.16% 38.16% 46.33%
Neutral 5.33% 3.63% 1.59% 3.97% 6.33% 32.69%
Contradiction 44.63% 1.33% 6.61% 0.87% 55.50% 20.98%
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Examples (Abductive NLI)

Observation-B A scientist discovers that there is a disease beginning to spread.
Hypothesis-1 The scientist warns everyone then realizes he was wrong.
Hypothesis-2 They accidentally contaminated themselves with the spread.

Observation-E They feel foolish for having done so.
Old Label Hypothesis-1

New Label Hypothesis-1(41), Hypothesis-2(59)

BERT-large RoBERTa-large XLNet-large BART ALBERT DistilBERT
Hypothesis-1 0.01% 4.50% 12.25% 0.67% 97.67% 4.92%
Hypothesis-2 99.9% 95.50% 87.75% 99.33% 2.33% 95.08%
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The effect of human agreement

Models achieve near perfect accuracy on data with high agreement while 
cannot beat random guess on data with low agreement.

Entropy range

Entropy range
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Related Work

This work is inspired by previous work on “Inherent Disagreements in Human Textual 
Inferences”. (Pavlick and Kwiatkowski, 2019)
(We stick to the 3-way NLI labeling schema while Pavlick&Kwiatkowski2019 use a continuous labeling schema)

Human annotation disagreements are also studied on other tasks including: 
• word sense disambiguation (Erk and McCarthy, 2009; Jurgens, 2013), coreference (Versley, 2008), 
• frame corpus collection (Dumitrache et al., 2019), 
• anaphora resolution (Poesio and Artstein, 2005; Poesio et al., 2019), entity linking (Reidsma and op den 

Akker, 2008), 
• tagging and parsing (Plank et al., 2014; Alonso et al., 2015),
• veridicality (De Marneffe et al., 2012; Karttunen et al., 2014).
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Take away

• NLU evaluation should consider evaluating collective human opinions;
• We present ChaosNLI; (100 annotations per example for examples in SNLI, 

MNLI and AbductiveNLI)
• High human disagreement exists in a noticeable amount of examples;
• The models lack the ability to recover the distribution over human labels;
• The models achieve near-perfect accuracy on the data with high 

agreement, whereas they can barely beat a random guess on the data with 
low agreement.

Future work
Explicit design on both evaluating and training models for human opinions 
distribution, especially on NLP tasks with a descriptive nature.
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