What Can We Learn from Collective HumAn OpinionS on Natural Language Inference Data? (ChaosNLI)

Yixin Nie, Xiang Zhou, Mohit Bansal

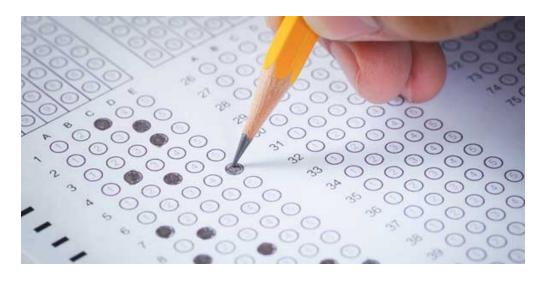
Human Education

(Human education testing: SAT, GRE, etc.)

- Questions & answers are designed by educators
- Scores are used as certifications or qualifications

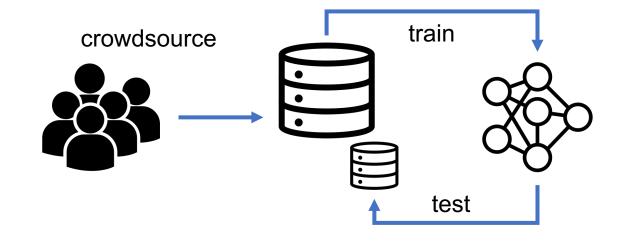
Human Education

Natural Language Processing



(Human education testing: SAT, GRE, etc.)

- Questions & answers are designed by educators
- Scores are used as certifications or qualifications



(Model evaluation & benchmarking)

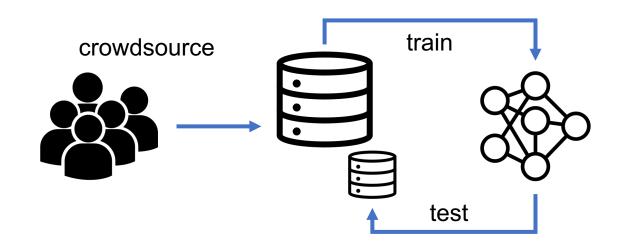
- Task data are mostly collected via crowdsource
- Scores are used for model ranking

Human Education

(Human education testing: SAT, GRE, etc.)

- Questions & answers are designed by educators
- Scores are used as certifications or qualifications
- Most questions are objective

Natural Language Processing



(Model evaluation & benchmarking)

- Task data are mostly collected via crowdsource
- Scores are used for model ranking
- Many NLP tasks can be subjective

Human Education

Natural Language Processing

Testing is mostly about understanding of a well-defined concept or knowledge.

Correct Labels are usually authoritative.

Many NLP tasks depend on the unspecified pragmatic context, calculation of plausibility, etc.

Gold Label can often be debatable.

Human Education

Natural Language Processing

Testing is mostly about understanding of a well-defined concept or knowledge.

Correct Labels are usually authoritative.

Many NLP tasks depend on the unspecified pragmatic context, calculation of plausibility, etc.

Gold Label can often be debatable.

To understand collective human opinions on NLU data, we did case studies on Natural Language Inference and Abductive Inference.

Is the hypothesis entailed or contradicted by the premise?

Normal example in SNLI

	Premise	A man inspects the uniform of a figure in some East Asian country.				
H	ypothesis	The man is sleeping.				
	Label	Entailment, Neutral, Contradiction				

Is the hypothesis entailed or contradicted by the premise?

Normal example in SNLI

Premise	A man inspects the uniform of a figure in some East Asian country.			
Hypothesis	The man is sleeping.			
Label	Entailment, Neutral, Contradiction			

Subtle example in MNLI

Premise	There are a number of expensive jewelry and other duty-free shops, all with goods priced in US dollars (duty-free goods must always be paid for in foreign currency).
Hypothesis	You can pay using the US dollar when buying goods from the duty-free shops.
Label	Entailment? Contradiction? Neutral?

Contradiction: A duty-free shop can only sell duty-free goods and you can only pay in foreign currency, assuming local is US. Entailment: A duty-free shop can sell things other than duty-free goods for US dollar.

Which of the two hypotheses is more likely to cause Observation-Beginning to turn into Observation-Ending?

Normal example in Abductive NLI

Observation-B	t was a very hot summer day.					
Hypothesis-1	e decided to run in the heat.					
Hypothesis-2	He drank a glass of ice cold water.					
Observation-E	He felt much better!					
Label	Hypothesis-2					

Which of the two hypotheses is more likely to cause Observation-Beginning to turn into Observation-Ending?

Normal example in Abductive NLI

Observation-B	t was a very hot summer day.					
Hypothesis-1	le decided to run in the heat.					
Hypothesis-2	He drank a glass of ice cold water.					
Observation-E	He felt much better!					
Label	Hypothesis-2					

Subtle example in Abductive NLI

Observation-B	Amy and her friends were out at 3 AM.
Hypothesis-1	They started getting followed by a policeman, ran, and hid behind a building.
Hypothesis-2	The decided to break into the football field. When suddenly they saw a flashlight coming towards them. They all started running for the bleachers.
Observation-E	They stayed there breathing hard, and praying they hadn't been seen.
Label	Hypothesis-1 ? Hypothesis 2

Gold-label Practice is Worrisome

Common sense is not so COMMON.

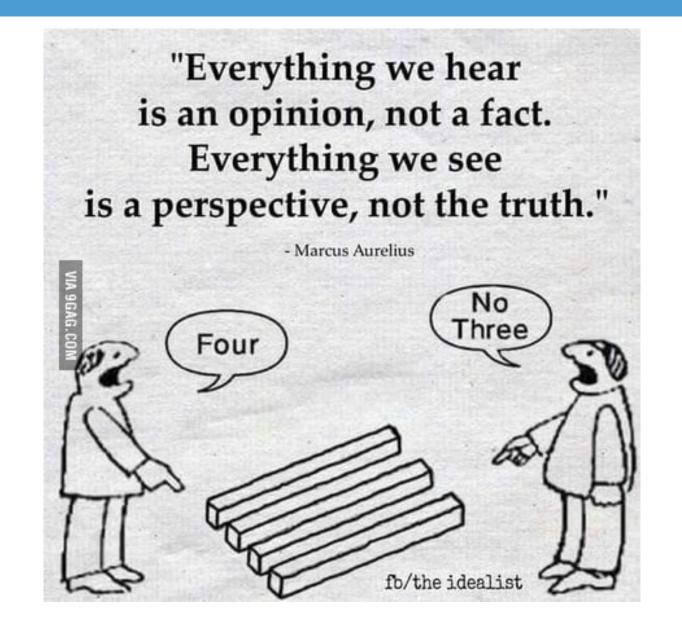
- Voltaire

Gold-label Practice is Worrisome

Common sense is not so COMMON. - Voltaire

Evaluating model ability to recover human opinions distribution is also (even more) important.

Collective HumAn OpinionS



Collective HumAn OpinionS

ChaosNLI

100 Annotations per Example

	Abductive NLI (ChaosNLI-Alpha)		Multi-NLI (ChaosNLI-M)
Count	1,532	1,514	1,599

A Total of 464,500 Annotations

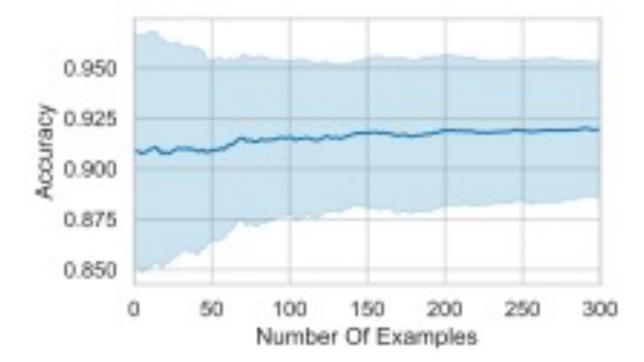
Collection

Challenge (Human Opinions)

Inter-Annotation-Agreement is not applicable

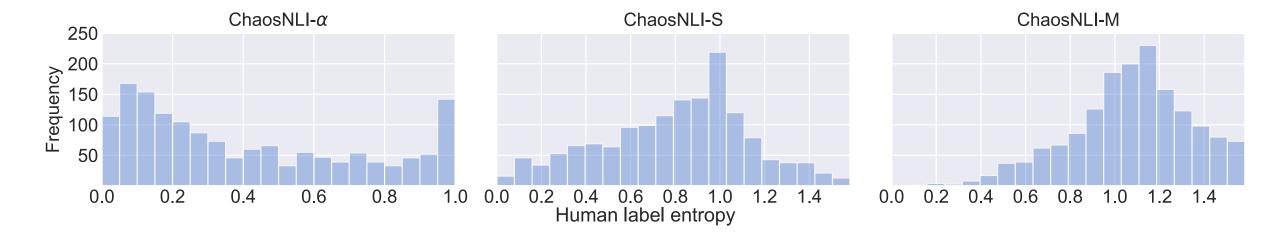
Quality Control

- Onboarding Test
- Training Phrase
- Performance Tracking



100 annotations to calculate label distribution entropy.

$$\mathbf{H}(\mathbf{p}) = -\sum_{i \in \mathcal{C}} p_i \log(p_i) \quad p_i = \frac{n_i}{\sum_{j \in \mathcal{C}} n_j}$$



$$\mathrm{KL}\left(\mathbf{p}\|\mathbf{q}\right) = \sum_{i\in\mathcal{C}} p_i \log\left(\frac{p_i}{q_i}\right)$$

$$JSD\left(\mathbf{p}\|\mathbf{q}\right) = \sqrt{\frac{1}{2}}\left(KL\left(\mathbf{p}\|\mathbf{m}\right) + KL\left(\mathbf{q}\|\mathbf{m}\right)\right)$$

p is the estimated human distribution
q is model softmax outputs
m = (p + q) / 2

Model	ChaosNLI- α			ChaosNLI-S			ChaosNLI-M		
	JSD↓	KL↓	Acc.↑ (old/new)	JSD↓	KL↓	Acc.↑ (old/new)	JSD↓	KL↓	Acc.↑ (old/new)
Chance	0.3205	0.406	0.5098/0.5052	0.383	0.5457	0.4472/0.5370	0.3023	0.3559	0.4509/0.4634
BERT-b	0.3209	3.7981	0.6527/0.6534	0.2345	0.481	0.7008/0.7292	0.3055	0.7204	0.5991/0.5591
XLNet-b	0.2678	1.0209	0.6743/0.6867	0.2331	0.5121	0.7114/0.7365	0.3069	0.7927	0.6373/0.5891
RoBERTa-b	0.2394	0.8272	0.7154/0.7396	0.2294	0.5045	0.7272/0.7536	0.3073	0.7807	0.6391/0.5922
BERT-I	0.3055	3.7996	0.6802/0.6821	0.23	0.5017	0.7266/0.7384	0.3152	0.8449	0.6123/0.5691
XLNet-l	0.2282	1.8166	0.814/0.8133	0.2259	0.5054	<u>0.7431</u> /0.7807	0.3116	0.8818	0.6742 / <u>0.6185</u>
RoBERTa-l	0.2128	1.3898	0.8531 / <u>0.8368</u>	<u>0.221</u>	0.4937	0.749/0.7867	0.3112	0.8701	0.6742/0.6354
BART	0.2215	1.5794	0.8185/0.814	0.2203	<u>0.4714</u>	0.7424/ <u>0.7827</u>	0.3165	0.8845	<u>0.6635</u> /0.5922
ALBERT	0.2208	2.9598	<u>0.8440</u> / 0.8473	0.235	0.5342	0.7153/0.7814	0.3159	0.862	0.6485/0.5897
DistilBert	0.3101	1.0345	0.592/0.607	0.2439	0.4682	0.6711/0.7021	0.3133	0.6652	0.5472/0.5103
Est. Human	0.0421	0.0373	0.885/0.97	0.0614	0.0411	0.775/0.94	0.0695	0.0381	0.66/0.86

Human performance is estimated by comparing 100 human labels and another 100 human labels. Significant difference exists between model outputs and human opinions.

Model	ChaosNLI- α			ChaosNLI-S			ChaosNLI-M		
1110401	JSD↓	KL↓	Acc.↑ (old/new)	JSD↓	KL↓	Acc.↑ (old/new)	JSD↓	KL↓	Acc.↑ (old/new)
Chance	0.3205	0.406	0.5098/0.5052	0.383	0.5457	0.4472/0.5370	0.3023	0.3559	0.4509/0.4634
BERT-b XLNet-b	0.3209 0.2678	3.7981 1.0209	0.6527/0.6534 0.6743/0.6867	0.2345 0.2331	0.481 0.5121	0.7008/0.7292 0.7114/0.7365	0.3055 0.3069	$\frac{0.7204}{0.7927}$	0.5991/0.5591 0.6373/0.5891
RoBERTa-b	0.2394	0.8272	0.7154/0.7396	0.2294	0.5045	0.7272/0.7536	0.3073	0.7807	0.6391/0.5922
BERT-I	0.3055	3.7996	0.6802/0.6821	0.23	0.5017	0.7266/0.7384	0.3152	0.8449	0.6123/0.5691
XLNet-l	0.2282	1.8166	0.814/0.8133	0.2259	0.5054	<u>0.7431</u> /0.7807	0.3116	0.8818	0.6742 / <u>0.6185</u>
RoBERTa-l	0.2128	1.3898	0.8531 / <u>0.8368</u>	0.221	0.4937	0.749/0.7867	0.3112	0.8701	0.6742/0.6354
BART	0.2215	1.5794	0.8185/0.814	0.2203	<u>0.4714</u>	0.7424/ <u>0.7827</u>	0.3165	0.8845	<u>0.6635</u> /0.5922
ALBERT	0.2208	2.9598	<u>0.8440</u> / 0.8473	0.235	0.5342	0.7153/0.7814	0.3159	0.862	0.6485/0.5897
DistilBert	0.3101	1.0345	0.592/0.607	0.2439	0.4682	0.6711/0.7021	0.3133	0.6652	0.5472/0.5103
Est. Human	0.0421	0.0373	0.885/0.97	0.0614	0.0411	0.775/0.94	0.0695	0.0381	0.66/0.86

Chance baseline is using uniform distribution on the labels.

Even chance baseline is hard to beat.

Model	ChaosNLI- α			ChaosNLI-S			ChaosNLI-M		
	JSD↓	KL↓	Acc.↑ (old/new)	JSD↓	KL↓	Acc.↑ (old/new)	JSD↓	KL↓	Acc.↑ (old/new)
Chance	0.3205	0.406	0.5098/0.5052	0.383	0.5457	0.4472/0.5370	0.3023	0.3559	0.4509/0.4634
BERT-b	0.3209	3.7981	0.6527/0.6534	0.2345	0.481	0.7008/0.7292	0.3055	0.7204	0.5991/0.5591
XLNet-b	0.2678	1.0209	0.6743/0.6867	0.2331	0.5121	0.7114/0.7365	0.3069	0.7927	0.6373/0.5891
RoBERTa-b	0.2394	0.8272	0.7154/0.7396	0.2294	0.5045	0.7272/0.7536	0.3073	0.7807	0.6391/0.5922
BERT-I	0.3055	3.7996	0.6802/0.6821	0.23	0.5017	0.7266/0.7384	0.3152	0.8449	0.6123/0.5691
XLNet-l	0.2282	1.8166	0.814/0.8133	0.2259	0.5054	<u>0.7431</u> /0.7807	0.3116	0.8818	0.6742 / <u>0.6185</u>
RoBERTa-l	0.2128	1.3898	0.8531 / <u>0.8368</u>	<u>0.221</u>	0.4937	0.749/0.7867	0.3112	0.8701	0.6742/0.6354
BART	0.2215	1.5794	0.8185/0.814	0.2203	<u>0.4714</u>	0.7424/ <u>0.7827</u>	0.3165	0.8845	<u>0.6635</u> /0.5922
ALBERT	0.2208	2.9598	<u>0.8440</u> / 0.8473	0.235	0.5342	0.7153/0.7814	0.3159	0.862	0.6485/0.5897
DistilBert	0.3101	1.0345	0.592/0.607	0.2439	0.4682	0.6711/0.7021	0.3133	0.6652	0.5472/0.5103
Est. Human	0.0421	0.0373	0.885/0.97	0.0614	0.0411	0.775/0.94	0.0695	0.0381	0.66/0.86

Large models are not always better.

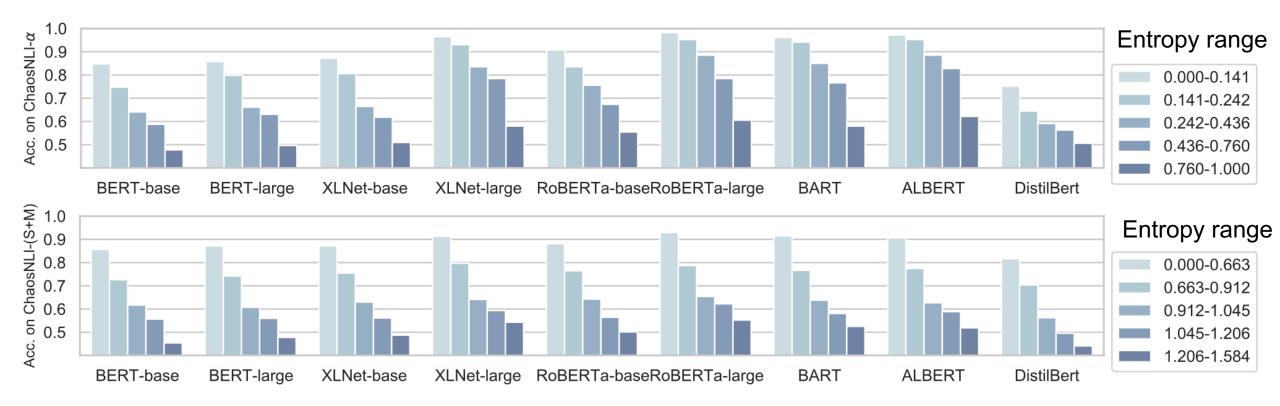
Premise	There are a number of expensive jewelry and other duty-free shops, all with goods priced in US dollars (duty-free goods must always be paid for in foreign currency).
Hypothesis	You can pay using the US dollar when buying goods from the duty-free shops.
Old Labels	C, C, E, N, C
New Labels	E(51), N(3), C(46)

	BERT-large	RoBERTa-large	XLNet-large	BART	ALBERT	DistilBERT
Entailment	<mark>50.03%</mark>	95.04%	91.80%	95.16%	38.16%	46.33%
Neutral	<mark>5.33%</mark>	3.63%	1.59%	3.97%	6.33%	32.69%
Contradiction	<mark>44.63%</mark>	1.33%	6.61%	0.87%	55.50%	20.98%

Observation-B	A scientist discovers that there is a disease beginning to spread.			
Hypothesis-1	The scientist warns everyone then realizes he was wrong.			
Hypothesis-2	They accidentally contaminated themselves with the spread.			
Observation-E	They feel foolish for having done so.			
Old Label	Hypothesis-1			
New Label	Hypothesis-1(41), Hypothesis-2(59)			

	BERT-large	RoBERTa-large	XLNet-large	BART	ALBERT	DistilBERT
Hypothesis-1	0.01%	4.50%	12.25%	0.67%	97.67%	4.92%
Hypothesis-2	99.9%	95.50%	87.75%	99.33%	2.33%	95.08%

The effect of human agreement



Models achieve near perfect accuracy on data with high agreement while cannot beat random guess on data with low agreement.

This work is inspired by previous work on "Inherent Disagreements in Human Textual Inferences". (Pavlick and Kwiatkowski, 2019)

(We stick to the 3-way NLI labeling schema while Pavlick&Kwiatkowski2019 use a continuous labeling schema)

Human annotation disagreements are also studied on other tasks including:

- word sense disambiguation (Erk and McCarthy, 2009; Jurgens, 2013), coreference (Versley, 2008),
- frame corpus collection (Dumitrache et al., 2019),
- anaphora resolution (Poesio and Artstein, 2005; Poesio et al., 2019), entity linking (Reidsma and op den Akker, 2008),
- tagging and parsing (Plank et al., 2014; Alonso et al., 2015),
- veridicality (De Marneffe et al., 2012; Karttunen et al., 2014).

- NLU evaluation should consider evaluating collective human opinions;
- We present **ChaosNLI**; (100 annotations per example for examples in SNLI, MNLI and AbductiveNLI)
- High human disagreement exists in a noticeable amount of examples;
- The models lack the ability to recover the distribution over human labels;
- The models achieve near-perfect accuracy on the data with high agreement, whereas they can barely beat a random guess on the data with low agreement.

Future work

Explicit design on both evaluating and training models for human opinions distribution, especially on NLP tasks with a descriptive nature.

Thanks

Contact:yixin1@cs.unc.eduGitHub:https://github.com/easonnie/ChaosNLIWebsite:https://cs.unc.edu/~yixin1

Acknowledgment:

Thanks to the authors of SNLI, MNLI, and αNLI. This work was supported by NSF, DARPA, ONR.

