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« Scores are used as certifications or qualifications » Scores are used for model ranking

* Most questions are objective « Many NLP tasks can be subjective
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To understand collective human opinions on NLU data,
we did case studies on Natural Language Inference and Abductive Inference.
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Hypothesis | The man is sleeping.
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Subtle example in MNLI

Premise

There are a number of expensive jewelry and other duty-free shops, all with goods priced
in US dollars (duty-free goods must always be paid for in foreign currency).

Hypothesis

You can pay using the US dollar when buying goods from the duty-free shops.

Label

Entailment? Contradiction? Neutral?

Contradiction:
Entailment:

A duty-free shop can only sell duty-free goods and you can only pay in foreign currency, assuming local is US.
A duty-free shop can sell things other than duty-free goods for US dollar.




Abductive Commonsense Inference

Which of the two hypotheses is more likely to cause Observation-Beginning to turn into Observation-Ending?

Normal example in Abductive NLI

Observation-B | It was a very hot summer day.

Hypothesis-1 | He decided to run in the heat.

Hypothesis-2 | He drank a glass of ice cold water.

Observation-E | He felt much better!

Label | Hypothesis-2
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Which of the two hypotheses is more likely to cause Observation-Beginning to turn into Observation-Ending?

Normal example in Abductive NLI

Observation-B | It was a very hot summer day.
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Observation-E | He felt much better!
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Subtle example in Abductive NLI

Observation-B | Amy and her friends were out at 3 AM.

Hypothesis-1 | They started getting followed by a policeman, ran, and hid behind a building.

Hypothesis-2 | The decided to break into the football field. When suddenly they saw a flashlight coming towards
them. They all started running for the bleachers.

Observation-E | They stayed there breathing hard, and praying they hadn't been seen.

Label | Hypothesis-1 ? Hypothesis 2
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Gold-label Practice is Worrisome

Common sense

is not so " @
COMMON.

- Voltaire

Evaluating model ability to recover human opinions distribution is also (even more) important.
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Collective HumAn OpinionS

"Everything we hear
is an opinion, not a fact.

Everything we see
is a perspective, not the truth."

- Marcus Aurelius
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Dataset

Collective HumAnN OpinionS

ChaosNLI

100 Annotations per Example

Abductive NLI Stanford NLI Multi-NLI
(ChaosNLI-Alpha) | (ChaosNLI-S) (ChaosNLI-M)

Count 1,532 1,514 1,599
A Total of 464,500 Annotations
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Collection

Challenge (Human Opinions)
Inter-Annotation-Agreement is not applicable
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Human Agreement Distribution

100 annotations to calculate label distribution entropy.
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Analysis of Model Predictions

Softmax Output vs. Human Label Distribution

ISD (p|lq) = \/%(KL (p|/m) + KL (q||jm))

p is the estimated human distribution
q is model softmax outputs
m=(p+q)/2
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Analysis of Model Predictions

Softmax Output vs. Human Label Distribution

Model ChaosNLI-« ChaosNLI-S ChaosNLI-M

JSD| KL| Acc.?T (old/mew) JSD| KL| Acc.t(oldnew) JSD| KL| Acc.] (old/new)
Chance 0.3205 0.406  0.5098/0.5052  0.383 0.5457 0.4472/0.5370  0.3023 0.3559 0.4509/0.4634
BERT-b 0.3209 3.7981 0.6527/0.6534  0.2345 0.481  0.7008/0.7292  0.3055 0.7204  0.5991/0.5591

XLNet-b 0.2678 1.0209 0.6743/0.6867  0.2331 0.5121  0.7114/0.7365  0.3069 0.7927  0.6373/0.5891
RoBERTa-b 0.2394 0.8272  0.7154/0.7396  0.2294 0.5045  0.7272/0.7536  0.3073 0.7807  0.6391/0.5922

BERT-1 0.3055 3.7996  0.6802/0.6821 0.23  0.5017 0.7266/0.7384  0.3152 0.8449  0.6123/0.5691
XLNet-1 0.2282 1.8166  0.814/0.8133  0.2259 0.5054  0.7431/0.7807 0.3116 0.8818  0.6742/0.6185
RoBERTa-l1 0.2128 1.3898  0.8531/0.8368  0.221 0.4937  0.749/0.7867  0.3112 0.8701  0.6742/0.6354
BART 0.2215 1.5794  0.8185/0.814  0.2203 0.4714 0.7424/0.7827 0.3165 0.8845  0.6635/0.5922

ALBERT 0.2208 2.9598 0.8440/0.8473  0.235 0.5342  0.7153/0.7814  0.3159 0.862  0.6485/0.5897
DistilBert 0.3101 1.0345 0.592/0.607 0.2439 0.4682 0.6711/0.7021  0.3133 0.6652  0.5472/0.5103

Est. Human 0.0421 0.0373 0.885/0.97 0.0614 0.0411 0.775/0.94 0.0695 0.0381 0.66/0.86

Human performance is estimated by comparing 100 human labels and another 100 human labels.

Significant difference exists between model outputs and human opinions.
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Analysis of Model Predictions

Softmax Output vs. Human Label Distribution

Model ChaosNLI-« ChaosNLI-S ChaosNLI-M

JSD| KL| Acc.?T (old/mew) JSD| KL| Acc.t(oldnew) JSD| KL| Acc.] (old/new)
Chance 0.3205 0.406  0.5098/0.5052  0.383 0.5457 0.4472/0.5370 0.3023 0.3559 0.4509/0.4634
BERT-b 0.3209 3.7981 0.6527/0.6534  0.2345 0.481  0.7008/0.7292 0.3055 0.7204  0.5991/0.5591

XLNet-b 0.2678 1.0209 0.6743/0.6867  0.2331 0.5121  0.7114/0.7365 0.3069 0.7927  0.6373/0.5891
RoBERTa-b 0.2394 0.8272  0.7154/0.7396  0.2294 0.5045  0.7272/0.7536 1 0.3073 0.7807  0.6391/0.5922

BERT-1 0.3055 3.7996  0.6802/0.6821 0.23  0.5017 0.7266/0.7384  0.3152 0.8449  0.6123/0.5691
XLNet-1 0.2282 1.8166  0.814/0.8133  0.2259 0.5054  0.7431/0.7807 0.3116 0.8818  0.6742/0.6185
RoBERTa-l 0.2128 1.3898  0.8531/0.8368  0.221 0.4937  0.749/0.7867  0.3112 0.8701  0.6742/0.6354
BART 0.2215 1.5794  0.8185/0.814  0.2203 0.4714 0.7424/0.7827 0.3165 0.8845 0.6635/0.5922

ALBERT 0.2208 2.9598 0.8440/0.8473  0.235 0.5342  0.7153/0.7814 0.3159 0.862  0.6485/0.5897
DistilBert 0.3101 1.0345 0.592/0.607 0.2439 0.4682 0.6711/0.7021  0.3133 0.6652  0.5472/0.5103

Est. Human 0.0421 0.0373 0.885/0.97 0.0614 0.0411 0.775/0.94 0.0695 0.0381 0.66/0.86

Chance baseline is using uniform distribution on the labels.

Even chance baseline is hard to beat.
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Analysis of Model Predictions

Softmax Output vs. Human Label Distribution

Model ChaosNLI-« ChaosNLI-S ChaosNLI-M

JSD| KL| Acc.] (old/mew) JSDJ KL| Acc.?] (old/mew) JSDJ KL| Acc.7] (old/new)
Chance 0.3205 0.406  0.5098/0.5052  0.383 0.5457 0.4472/0.5370  0.3023 0.3559 0.4509/0.4634
BERT-b 0.3209 3.7981 0.6527/0.6534  0.2345 0.481  0.7008/0.7292  0.3055 0.7204  0.5991/0.5591

XLNet-b 0.2678 1.0209 0.6743/0.6867  0.2331 0.5121  0.7114/0.7365  0.3069 0.7927  0.6373/0.5891
RoBERTa-b 0.2394 0.8272  0.7154/0.7396  0.2294 0.5045  0.7272/0.7536  0.3073 0.7807  0.6391/0.5922

BERT-1 0.3055 3.7996  0.6802/0.6821 0.23  0.5017 0.7266/0.7384  0.3152 0.8449  0.6123/0.5691
XLNet-1 0.2282 1.8166  0.814/0.8133  0.2259 0.5054  0.7431/0.7807 0.3116 0.8818  0.6742/0.6185
RoBERTa-l1 0.2128 1.3898  0.8531/0.8368  0.221 0.4937  0.749/0.7867  0.3112 0.8701  0.6742/0.6354
BART 0.2215 1.5794  0.8185/0.814  0.2203 0.4714 0.7424/0.7827 0.3165 0.8845  0.6635/0.5922

ALBERT 0.2208 2.9598 0.8440/0.8473  0.235 0.5342  0.7153/0.7814  0.3159 0.862  0.6485/0.5897
DistilBert 0.3101 1.0345 0.592/0.607 0.2439 0.4682 0.6711/0.7021  0.3133 0.6652  0.5472/0.5103

Est. Human 0.0421 0.0373 0.885/0.97 0.0614 0.0411 0.775/0.94 0.0695 0.0381 0.66/0.86

Large models are not always better.
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Examples (NLI)

Premise | There are a number of expensive jewelry and other duty-free shops, all with goods priced
in US dollars (duty-free goods must always be paid for in foreign currency).

Hypothesis | You can pay using the US dollar when buying goods from the duty-free shops.
Old Labels | C,C, E, N, C

New Labels | E(51), N(3), C(46)

| |BERT-Harge |RoBERTa-large | XLNet-large | BART ALBERT DistilBERT

Entailment 50.03% 95.04% 91.80% 95.16% 38.16% 46.33%
Neutral 5.33% 3.63% 1.59% 3.97% 6.33% 32.69%
Contradiction 44.63% 1.33% 6.61% 0.87% 55.50% 20.98%
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Examples (Abductive NLI)

Observation-B | A scientist discovers that there is a disease beginning to spread.

Hypothesis-1 | The scientist warns everyone then realizes he was wrong.

Hypothesis-2 | They accidentally contaminated themselves with the spread.

Observation-E | They feel foolish for having done so.
Old Label | Hypothesis-1
New Label | Hypothesis-1(41), Hypothesis-2(59)

| |BERT-Harge |RoBERTa-large | XLNet-large | BART ALBERT DistilBERT

Hypothesis-1 0.01% 4.50% 12.25% 0.67% 97.67% 4.92%
Hypothesis-2 99.9% 95.50% 87.75% 99.33% 2.33% 95.08%
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The effect of human agreement

1.0
%’ 09 Entropy range
2 0.8 0.000-0.141
©
5 07 0.141-0.242
S 0.6 I e 0.242-0.436
$ 05 I I I I I I II e 0.436-0.760
< . Il [ O s 0.760-1.000

BERT-base BERT-large = XLNet-base  XLNet-large RoBERTa-baseRoBERTa-large BART ALBERT DistilBert

=10
3 0.9 Entropy range
= 0.8 0.000-0.663
S 0.7 0.663-0.912
e
S 06 I I mem 0.912-1.045
§ 0.5 I II I II I I I I I mem 1.045-1.206
e - L N N i i Mo | o 12061584

BERT-base BERT-large = XLNet-base @ XLNet-large RoBERTa-baseRoBERTa-large BART ALBERT DistilBert

Models achieve near perfect accuracy on data with high agreement while
cannot beat random guess on data with low agreement.
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Related Work

This work is inspired by previous work on “Inherent Disagreements in Human Textual
Inferences”. (Pavlick and Kwiatkowski, 2019)

(We stick to the 3-way NLI labeling schema while Pavlick&Kwiatkowski2019 use a continuous labeling schema)

Human annotation disagreements are also studied on other tasks including:

word sense disambiguation (Erk and McCarthy, 2009; Jurgens, 2013), coreference (Versley, 2008),
frame corpus collection (Dumitrache et al., 2019),

anaphora resolution (Poesio and Artstein, 2005; Poesio et al., 2019), entity linking (Reidsma and op den
Akker, 2008),

tagging and parsing (Plank et al., 2014; Alonso et al., 2015),
veridicality (De Marneffe et al., 2012; Karttunen et al., 2014).
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Take away

 NLU evaluation should consider evaluating collective human opinions;

« We present ChaosNLI; (100 annotations per example for examples in SNLI,
MNLI and AbductiveNLI)

* High human disagreement exists in a noticeable amount of examples;
* The models lack the ability to recover the distribution over human labels;

 The models achieve near-perfect accuracy on the data with high
agreement, whereas they can barely beat a random guess on the data with
low agreement.

Future work

Explicit design on both evaluating and training models for human opinions
distribution, especially on NLP tasks with a descriptive nature.
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Thanks

Contact: vixin1@cs.unc.edu
GitHub: https://github.com/easonnie/ChaosNLI
Website: https://cs.unc.edu/~yixin1
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