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where p̂i is the output of the model, Tp/s
pos is the

positive set and Tp/s
neg is the negative set. As shown

in Fig. 1, at sentence level, ground-truth sentences
were served as positive examples while other sen-
tences from upstream retrieved set were served as
negative examples. Similarly at the paragraph-
level, paragraphs having any ground-truth sen-
tence were used as positive examples and other
paragraphs from the upstream term-based retrieval
processes were used as negative examples.

QA: We followed Devlin et al. (2018) for QA
span prediction modeling. To correctly handle
yes-or-no questions in HOTPOTQA, we fed the
two additional “yes” and “no” tokens between
[CLS ] and the Query as:

[CLS ] yes no Query [SEP ]Context [SEP ]

where the supervision was given to the second or
the third token when the answer is “yes” or “no”,
such that they can compete with all other predicted
spans. The parameters of the neural QA model
were trained to maximize the log probabilities of
the true start and end indexes as:

Jqa = �
X

i

⇥
log(ŷsi ) + log(ŷei )

⇤

where ŷsi and ŷei are the predicted probability on
the ground-truth start and end position for the ith
example, respectively. It is worth noting that we
used ground truth supporting sentences plus some
other sentences sampled from upstream retrieved
set as the context for training the QA module such
that it will adapt to the upstream data distribution
during inference.

Fact Verification: Following Thorne et al.
(2018), we formulate downstream fact verifica-
tion as the 3-way natural language inference (NLI)
classification problem (MacCartney and Manning,
2009; Bowman et al., 2015) and train the model
with 3-way cross entropy loss. The input format is
the same as that of semantic retrieval and the ob-
jective is Jver = �

P
i yi · log(ŷi), where ŷi 2

R3 denotes the model’s output for the three veri-
fication labels, and yi is a one-hot embedding for
the ground-truth label. For verifiable queries, we
used ground truth evidential sentences plus some
other sentences sampled from upstream retrieved
set as new evidential context for NLI. For non-
verifiable queries, we only used sentences sam-
pled from upstream retrieved set as context be-
cause those queries are not associated with ground

truth evidential sentences. This detail is important
for the model to identify non-verifiable queries
and will be explained more in Sec 6. Additional
training details and hyper-parameter selections are
in the Appendix (Sec. A; Table 6).

It is worth noting that each sub-module in the
system relies on its preceding sub-module to pro-
vide data both for training and inference. This
means that there will be upstream data distribu-
tion misalignment if we trained the sub-module in
isolation without considering the properties of its
precedent upstream module. The problem is simi-
lar to the concept of internal covariate shift (Ioffe
and Szegedy, 2015), where the distribution of each
layer’s inputs changes inside a neural network.
Therefore, it makes sense to study this issue in a
joint MRS setting rather than a typical supervised
learning setting where training and test data tend
to be fixed and modules being isolated. We release
our code and the organized data both for repro-
ducibility and providing an off-the-shelf testbed to
facilitate future research on MRS.

4 Experimental Setup

MRS requires a system not only to retrieve rele-
vant content from textual KBs but also to poccess
enough understanding ability to solve the down-
stream task. To understand the impact or im-
portance of semantic retrieval on the downstream
comprehension, we established a unified exper-
imental setup that involves two different down-
stream tasks, i.e., multi-hop QA and fact verifica-
tion.

4.1 Tasks and Datasets

HOTPOTQA: This dataset is a recent large-scale
QA dataset that brings in new features: (1) the
questions require finding and reasoning over mul-
tiple documents; (2) the questions are diverse and
not limited to pre-existing KBs; (3) it offers a
new comparison question type (Yang et al., 2018).
We experimented our system on HOTPOTQA in
the fullwiki setting, where a system must find
the answer to a question in the scope of the en-
tire Wikipedia, an ideal MRS setup. The sizes
of the train, dev and test split are 90,564, 7,405,
and 7,405. More importantly, HOTPOTQA also
provides human-annotated sentence-level support-
ing facts that are needed to answer each ques-
tion. Those intermediate annotations enable evalu-
ation on models’ joint ability on both fact retrieval
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Figure 1: System Overview.

Benchmark Results Ablation
and answer span prediction, facilitating our direct
analysis on the explainable predictions and its re-
lations with the upstream retrieval.
FEVER: The Fact Extraction and VERification
dataset (Thorne et al., 2018) is a recent dataset
collected to facilitate the automatic fact check-
ing. The work also proposes a benchmark task
in which given an arbitrary input claim, candi-
date systems are asked to select evidential sen-
tences from Wikipedia and label the claim as ei-
ther SUPPORT, REFUTE, or NOT ENOUGH INFO,
if the claim can be verified to be true, false,
or non-verifiable, respectively, based on the evi-
dence. The sizes of the train, dev and test split
are 145,449, 19,998, and 9,998. Similar to HOT-
POTQA, the dataset provides annotated sentence-
level facts needed for the verification. These in-
termediate annotations could provide an accurate
evaluation on the results of semantic retrieval and
thus suits well for the analysis on the effects of
retrieval module on downstream verification.

As in Chen et al. (2017), we use Wikipedia as
our unique knowledge base because it is a compre-
hensive and self-evolving information source of-
ten used to facilitate intelligent systems. More-
over, as Wikipedia is the source for both HOT-
POTQA and FEVER, it helps standardize any fur-
ther analysis of the effects of semantic retrieval on
the two different downstream tasks.

4.2 Metrics

Following Thorne et al. (2018); Yang et al. (2018),
we used annotated sentence-level facts to calcu-
late the F1, Precision and Recall scores for eval-
uating sentence-level retrieval. Similarly, we la-
beled all the paragraphs that contain any ground
truth fact as ground truth paragraphs and used the
same three metrics for paragraph-level retrieval
evaluation. For HOTPOTQA, following Yang et al.
(2018), we used exact match (EM) and F1 met-
rics for QA span prediction evaluation, and used
the joint EM and F1 to evaluate models’ joint per-
formance on both retrieval and QA. The joint EM
and F1 are calculated as: Pj = Pa · Ps;Rj =

Ra · Rs;Fj = 2Pj ·Rj

Pj+Rj
;EMj = EMa · EMs, where

P , R, and EM denote precision, recall and EM;
the subscript a and s indicate that the scores are
for answer span and supporting facts.

For the FEVER task, following Thorne et al.
(2018), we used the Label Accuracy for evaluat-
ing downstream verification and the Fever Score

Method Ans Sup Joint

EM F1 EM F1 EM F1

Yang (2018) 24.7 34.4 5.3 41.0 2.5 17.7
Ding (2019) 37.6 49.4 23.1 58.5 12.2 35.3
whole pip. 46.5 58.8 39.9 71.5 26.6 49.2
Dev set

Yang (2018) 24.0 32.9 3.9 37.7 1.9 16.2
MUPPET 30.6 40.3 16.7 47.3 10.9 27.0
Ding (2019) 37.1 48.9 22.8 57.7 12.4 34.9
whole pip. 45.3 57.3 38.7 70.8 25.1 47.6
Test set

Table 1: Results of systems on HOTPOTQA.

Model F1 LA FS

Hanselowski (2018) - 68.49 64.74
Yoneda (2018) 35.84 69.66 65.41
Nie (2019) 51.37 69.64 66.15
Full system (single) 76.87 75.12 70.18
Dev set

Hanselowski (2018) 37.33 65.22 61.32
Yoneda (2018) 35.21 67.44 62.34
Nie (2019) 52.81 68.16 64.23
Full system (single) 74.62 72.56 67.26
Test set

Table 2: Performance of systems on FEVER. “F1” in-
dicates the sentence-level evidence F1 score. “LA” in-
dicates Label Acc. without considering the evidence
prediction. “FS”=FEVER Score (Thorne et al., 2018)

for joint performance. Fever score will award
one point for each example with the correct pre-
dicted label only if all ground truth facts were con-
tained in the predicted facts set with at most 5 el-
ements. We also used Oracle Score for the two
retrieval modules. The scores were proposed in
Nie et al. (2019) and indicate the upperbound of
final FEVER Score at one intermediate layer as-
suming all downstream modules are perfect. All
scores are averaged over examples in the whole
evaluation set.

5 Results on Benchmarks

We chose the best system based on the dev set, and
used that for submitting private test predictions on
both FEVER and HOTPOTQA4.

As can be seen in Table 1, with the proposed hi-
erarchical system design, the whole pipeline sys-

4Results can also be found at the leaderboard websites
for the two datasets: https://hotpotqa.github.io
and https://competitions.codalab.org/
competitions/18814
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Method P-Level Retrieval S-Level Retrieval Answer Joint

Prec. Rec. F1 EM Prec. Rec. F1 EM F1 EM F1

Whole Pip. 35.17 87.93 50.25 39.86 75.60 71.15 71.54 46.50 58.81 26.60 49.16
Pip. w/o p-level 6.02 89.53 11.19 0.58 29.57 60.71 38.84 31.23 41.30 0.34 19.71
Pip. w/o s-level 35.17 87.92 50.25 - - - - 44.77 56.71 - -

Table 3: Ablation over the paragraph-level and sentence-level neural retrieval sub-modules on HOTPOTQA.

Method P-Level Retrieval S-Level Retrieval Verification

Orcl. Prec. Rec. F1 Orcl. Prec. Rec. F1 LA FS L-F1 (S/R/N)

Whole Pip. 94.15 48.84 91.23 63.62 88.92 71.29 83.38 76.87 70.18 75.01 81.7/75.7/67.1
Pip. w/o p-level 94.69 18.11 92.03 30.27 91.07 44.47 86.60 58.77 61.55 67.01 76.5/72.7/40.8
Pip. w/o s-level 94.15 48.84 91.23 63.62 - - - - 55.92 61.04 72.1/67.6/27.7

Table 4: Ablation over the paragraph-level and sentence-level neural retrieval sub-modules on FEVER.
“LA”=Label Accuracy; “FS”=FEVER Score; “Orcl.” is the oracle upperbound of FEVER Score assuming all
downstream modules are perfect. “L-F1 (S/R/N)” means the classification f1 scores on the three verification la-
bels: SUPPORT, REFUTE, and NOT ENOUGH INFO.

module. Another interesting finding is that with-
out sentence-level retrieval module, the QA mod-
ule suffered much less than the verification mod-
ule; conversely, the removal of paragraph-level re-
trieval neural induces a 11 point drop on answer
EM comparing to a ⇠9 point drop on Label Accu-
racy in the verification task. This seems to indicate
that the downstream QA module relies more on
the upstream paragraph-level retrieval whereas the
verification module relies more on the upstream
sentence-level retrieval. Finally, we also evalu-
ate the F1 score on FEVER for each classifica-
tion label and we observe a significant drop of F1
on NOT ENOUGH INFO category without retrieval
module, meaning that semantic retrieval is vital for
the downstream verification module’s discrimina-
tive ability on NOT ENOUGH INFO label.

6.2 Sub-Module Change Analysis

To further study the effects of upstream seman-
tic retrieval towards downstream tasks, we change
training or inference data between intermediate
layers and then examine how this modification
will affect the downstream performance.

6.2.1 Effects of Paragraph-level Retrieval
We fixed hp = 0 (the value achieving the best
performance) and re-trained all the downstream
parameters and track their performance as kp
(the number of selected paragraph) being changed
from 1 to 12. The increasing of kp means a poten-
tial higher coverage of the answer but more noise
in the retrieved facts. Fig. 2 shows the results.
As can be seen that the EM scores for supporting
fact retrieval, answer prediction, and joint perfor-

Figure 2: The results of EM for supporting fact, answer
prediction and joint score, and the results of supporting
fact precision and recall with different values of kp at
paragraph-level retrieval on HOTPOTQA.

mance increase sharply when kp is changed from
1 to 2. This is consistent with the fact that at least
two paragraphs are required to ask each question
in HOTPOTQA. Then, after the peak, every score
decrease as kp becomes larger except the recall of
supporting fact which peaks when kp = 4. This
indicates that even though the neural sentence-
level retrieval module poccesses a certain level of
ability to select correct facts from noisier upstream
information, the final QA module is more sensitive
to upstream data and fails to maintain the overall
system performance. Moreover, the reduction on
answer EM and joint EM suggests that it might
be risky to give too much information for down-
stream modules with a unit of a paragraph.

6.2.2 Effects of Sentence-level Retrieval
Similarly, to study the effects of neural sentence-
level retrieval module towards downstream QA
and verification modules, we fixed ks to be 5 and
set hs ranging from 0.1 to 0.9 with a 0.1 interval.

Table 1: HotpotQA test results.

Figure 3: The results of EM for supporting fact, answer
prediction and joint score, and the results of supporting
fact precision and recall with different values of hs at
sentence-level retrieval on HOTPOTQA.

Figure 4: The results of Label Accuracy, FEVER
Score, and Evidence F1 with different values of hs at
sentence-level retrieval on FEVER.

Then, we re-trained the downstream QA and ver-
ification modules with different hs value and ex-
perimented on both HOTPOTQA and FEVER.
Question Answering: Fig. 3 shows the trend of
performance. Intuitively, the precision increase
while the recall decrease as the system becomes
more strict about the retrieved sentences. The EM
score for supporting fact retrieval and joint per-
formance reaches their highest value when hs =
0.5, a natural balancing point between precision
and recall. More interestingly, the EM score for
answer prediction peaks when hs = 0.2 and
where the recall is higher than the precision. This
misalignment between answer prediction perfor-
mance and retrieval performance indicates that un-
like the observation at paragraph-level, the down-
stream QA module is able to stand a certain
amount of noise at sentence-level and benefit from
a higher recall.
Fact Verification: Fig. 4 shows the trends for La-
bel Accuracy, FEVER Score, and Evidence F1 by
modifying upstream sentence-level threshold hs.
We observed that the general trend is similar to

Answer Type Total Correct Acc. (%)

Person 50 28 56.0
Location 31 14 45.2
Date 26 13 50.0
Number 14 4 28.6
Artwork 19 7 36.8
Yes/No 17 12 70.6
Event 5 2 40.0
Common noun 11 3 27.3
Group/Org 17 6 35.3
Other PN 20 9 45.0

Total 200 98 49.0

Table 5: System performance on different answer
types. “PN”= Proper Noun

 
 
 
 
 
 
 

24%

15%

12%7%
9%

8%

2%
5%

8%

10%

50

31
26

14 19 17
5

11
17 20

28

14 13
4 7 12

2 3 6 9

56
45.1612903250

28.57142857
36.84210526

70.58823529

40

27.27272727
35.29411765

45

0
10
20
30
40
50
60
70
80

Perso
n

Lo
cat

ion
Date

Number

Artw
ork

Ye
s/N

o
Ev

ent

Common noun

Group/O
rg

Other p
roper 

noun

Accuracy of different 
answer types

#Total #Correct Column1

56% 

Person 

Location 

Date 
Number 

Artwork 

Yes/No 

Event 

Common noun 

Group/Org 

Other proper noun 

Figure 5: Proportion of answer types.

that of QA task where both the label accuracy and
FEVER score peak at hs = 0.2 whereas the re-
trieval F1 peaks at hs = 0.5. Note that, although
the downstream verification could take advantage
of a higher recall, the module is more sensitive to
sentence-level retrieval comparing to the QA mod-
ule in HOTPOTQA. More detailed results are in
the Appendix.

6.3 Answer Breakdown

We further sample 200 examples from HOT-
POTQA and manually tag them according to sev-
eral common answer types (Yang et al., 2018).
The proportion of different answer types is shown
in Figure 5. The performance of the system on
each answer type is shown in Table 5. The most
frequent answer type is ’Person’ (24%) and the
least frequent answer type is ’Event’ (2%). It is
also interesting to note that the model performs
the best in Yes/No questions as shown in Table 5,
reaching an accuracy of 70.6%.
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in Figure 5. The performance of the system on
each answer type is shown in Table 5. The most
frequent answer type is ’Person’ (24%) and the
least frequent answer type is ’Event’ (2%). It is
also interesting to note that the model performs
the best in Yes/No questions as shown in Table 5,
reaching an accuracy of 70.6%.

Figure 3: The results of EM for supporting fact, answer
prediction and joint score, and the results of supporting
fact precision and recall with different values of hs at
sentence-level retrieval on HOTPOTQA.

Figure 4: The results of Label Accuracy, FEVER
Score, and Evidence F1 with different values of hs at
sentence-level retrieval on FEVER.

Then, we re-trained the downstream QA and ver-
ification modules with different hs value and ex-
perimented on both HOTPOTQA and FEVER.
Question Answering: Fig. 3 shows the trend of
performance. Intuitively, the precision increase
while the recall decrease as the system becomes
more strict about the retrieved sentences. The EM
score for supporting fact retrieval and joint per-
formance reaches their highest value when hs =
0.5, a natural balancing point between precision
and recall. More interestingly, the EM score for
answer prediction peaks when hs = 0.2 and
where the recall is higher than the precision. This
misalignment between answer prediction perfor-
mance and retrieval performance indicates that un-
like the observation at paragraph-level, the down-
stream QA module is able to stand a certain
amount of noise at sentence-level and benefit from
a higher recall.
Fact Verification: Fig. 4 shows the trends for La-
bel Accuracy, FEVER Score, and Evidence F1 by
modifying upstream sentence-level threshold hs.
We observed that the general trend is similar to

Answer Type Total Correct Acc. (%)

Person 50 28 56.0
Location 31 14 45.2
Date 26 13 50.0
Number 14 4 28.6
Artwork 19 7 36.8
Yes/No 17 12 70.6
Event 5 2 40.0
Common noun 11 3 27.3
Group/Org 17 6 35.3
Other PN 20 9 45.0

Total 200 98 49.0

Table 5: System performance on different answer
types. “PN”= Proper Noun
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that of QA task where both the label accuracy and
FEVER score peak at hs = 0.2 whereas the re-
trieval F1 peaks at hs = 0.5. Note that, although
the downstream verification could take advantage
of a higher recall, the module is more sensitive to
sentence-level retrieval comparing to the QA mod-
ule in HOTPOTQA. More detailed results are in
the Appendix.

6.3 Answer Breakdown

We further sample 200 examples from HOT-
POTQA and manually tag them according to sev-
eral common answer types (Yang et al., 2018).
The proportion of different answer types is shown
in Figure 5. The performance of the system on
each answer type is shown in Table 5. The most
frequent answer type is ’Person’ (24%) and the
least frequent answer type is ’Event’ (2%). It is
also interesting to note that the model performs
the best in Yes/No questions as shown in Table 5,
reaching an accuracy of 70.6%.

Question: Wojtek Wolski played for what team based
in the Miami metropolitan area?
GT Answer: Florida Panthers
GT Facts:
[Florida Panthers,0]: The Florida Panthers are a
professional ice hockey team based in the Miami
metropolitan area. (P-Score : 0.99; S-Score : 0.98)
[Wojtek Wolski,1]: In the NHL, he has played for
the Colorado Avalanche, Phoenix Coyotes, New York
Rangers, Florida Panthers, and the Washington Capi-
tals. (P-Score : 0.98; S-Score : 0.95)

Distracting Fact:
[History of the Miami Dolphins,0]: The Miami
Dolphins are a professional American football fran-
chise based in the Miami metropolitan area. (P-Score :
0.56; S-Score : 0.97)

Wrong Answer : The Miami Dolphins

Figure 6: An example with a distracting fact. P-Score
and S-Score are the retrieval score at paragraph and
sentence level respectively. The full pipeline was able
to filter the distracting fact and give the correct answer.
The wrong answer in the figure was produced by the
system without paragraph-level retrieval module.

6.4 Examples
Fig. 6 shows an example that is correctly handled
by the full pipeline system but not by the system
without paragraph-level retrieval module. We can
see that it is very difficult to filter the distract-
ing sentence after sentence-level either by the sen-
tence retrieval module or the QA module.

Above findings in both FEVER and HOT-
POTQA bring us some important guidelines for
MRS: (1) A paragraph-level retrieval module is
imperative; (2) Downstream task module is able
to undertake a certain amount of noise from
sentence-level retrieval; (3) Cascade effects on
downstream task might be caused by modification
at paragraph-level retrieval.

7 Conclusion

We proposed a simple yet effective hierarchical
pipeline system that achieves state-of-the-art re-
sults on two MRS tasks. Ablation studies demon-
strate the importance of semantic retrieval at both
paragraph and sentence levels in the MRS sys-
tem. The work can give general guidelines on
MRS modeling and inspire future research on the
relationship between semantic retrieval and down-
stream comprehension in a joint setting.
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Method P-Level Retrieval S-Level Retrieval Answer Joint

Prec. Rec. F1 EM Prec. Rec. F1 EM F1 EM F1

Whole Pip. 35.17 87.93 50.25 39.86 75.60 71.15 71.54 46.50 58.81 26.60 49.16
Pip. w/o p-level 6.02 89.53 11.19 0.58 29.57 60.71 38.84 31.23 41.30 0.34 19.71
Pip. w/o s-level 35.17 87.92 50.25 - - - - 44.77 56.71 - -

Table 3: Ablation over the paragraph-level and sentence-level neural retrieval sub-modules on HOTPOTQA.

Method P-Level Retrieval S-Level Retrieval Verification

Orcl. Prec. Rec. F1 Orcl. Prec. Rec. F1 LA FS L-F1 (S/R/N)

Whole Pip. 94.15 48.84 91.23 63.62 88.92 71.29 83.38 76.87 70.18 75.01 81.7/75.7/67.1
Pip. w/o p-level 94.69 18.11 92.03 30.27 91.07 44.47 86.60 58.77 61.55 67.01 76.5/72.7/40.8
Pip. w/o s-level 94.15 48.84 91.23 63.62 - - - - 55.92 61.04 72.1/67.6/27.7

Table 4: Ablation over the paragraph-level and sentence-level neural retrieval sub-modules on FEVER.
“LA”=Label Accuracy; “FS”=FEVER Score; “Orcl.” is the oracle upperbound of FEVER Score assuming all
downstream modules are perfect. “L-F1 (S/R/N)” means the classification f1 scores on the three verification la-
bels: SUPPORT, REFUTE, and NOT ENOUGH INFO.

module. Another interesting finding is that with-
out sentence-level retrieval module, the QA mod-
ule suffered much less than the verification mod-
ule; conversely, the removal of paragraph-level re-
trieval neural induces a 11 point drop on answer
EM comparing to a ⇠9 point drop on Label Accu-
racy in the verification task. This seems to indicate
that the downstream QA module relies more on
the upstream paragraph-level retrieval whereas the
verification module relies more on the upstream
sentence-level retrieval. Finally, we also evalu-
ate the F1 score on FEVER for each classifica-
tion label and we observe a significant drop of F1
on NOT ENOUGH INFO category without retrieval
module, meaning that semantic retrieval is vital for
the downstream verification module’s discrimina-
tive ability on NOT ENOUGH INFO label.

6.2 Sub-Module Change Analysis

To further study the effects of upstream seman-
tic retrieval towards downstream tasks, we change
training or inference data between intermediate
layers and then examine how this modification
will affect the downstream performance.

6.2.1 Effects of Paragraph-level Retrieval
We fixed hp = 0 (the value achieving the best
performance) and re-trained all the downstream
parameters and track their performance as kp
(the number of selected paragraph) being changed
from 1 to 12. The increasing of kp means a poten-
tial higher coverage of the answer but more noise
in the retrieved facts. Fig. 2 shows the results.
As can be seen that the EM scores for supporting
fact retrieval, answer prediction, and joint perfor-

Figure 2: The results of EM for supporting fact, answer
prediction and joint score, and the results of supporting
fact precision and recall with different values of kp at
paragraph-level retrieval on HOTPOTQA.

mance increase sharply when kp is changed from
1 to 2. This is consistent with the fact that at least
two paragraphs are required to ask each question
in HOTPOTQA. Then, after the peak, every score
decrease as kp becomes larger except the recall of
supporting fact which peaks when kp = 4. This
indicates that even though the neural sentence-
level retrieval module poccesses a certain level of
ability to select correct facts from noisier upstream
information, the final QA module is more sensitive
to upstream data and fails to maintain the overall
system performance. Moreover, the reduction on
answer EM and joint EM suggests that it might
be risky to give too much information for down-
stream modules with a unit of a paragraph.

6.2.2 Effects of Sentence-level Retrieval
Similarly, to study the effects of neural sentence-
level retrieval module towards downstream QA
and verification modules, we fixed ks to be 5 and
set hs ranging from 0.1 to 0.9 with a 0.1 interval.
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Figure 1: System Overview: blue dotted arrows indicate the inference flow and the red solid arrows indicate the
training flow. Grey rounded rectangles are neural modules with different functionality. The two retrieval modules
were trained with all positive examples from annotated ground truth set and negative examples sampled from the
direct upstream modules. Thus, the distribution of negative examples is subjective to the quality of the upstream
module.

size of the set acceptable enough for downstream
processing.
(2) Paragraph-Level Neural Retrieval: After
obtaining the initial set, we compare each para-
graph in PI with the input query q using a neural
model (which will be explained later in Sec 3.1).
The outputs of the neural model are treated as the
relatedness score between the input query and the
paragraphs. The scores will be used to sort all
the upstream paragraphs. Then, PI will be nar-
rowed to a new set PN (PN ⇢ PI) by selecting
top kp paragraphs having relatedness score higher
than some threshold value hp (going out from the
P-Level grey box in Fig. 1). kp and hp would be
chosen by keeping a good balance between the re-
call and precision of the paragraph retrieval.
(3) Sentence-Level Neural Retrieval: Next, we
select the evidence at the sentence-level by de-
composing all the paragraphs in PN into sen-
tences. Similarly, each sentence is compared with
the query using a neural model (see details in
Sec 3.1) and obtain a set of sentences S ⇢ PN for
the downstream task by choosing top ks sentences
with output scores higher than some threshold hs
(S-Level grey box in Fig. 1). During evaluation, S
is often evaluated against some ground truth sen-
tence set denoted as E.
(4) Downstream Modeling: At the final step, we
simply applied task-specific neural models (e.g.,
QA and NLI) on the concatenation of all the sen-

tences in S and the query, obtaining the final out-
put ŷ.

In some experiments, we modified the setup for
certain analysis or ablation purposes which will be
explained individually in Sec 6.

3.1 Modeling and Training

Throughout all our experiments, we used BERT-
Base (Devlin et al., 2018) to provide the state-of-
the-art contextualized modeling of the input text.3

Semantic Retrieval: We treated the neural se-
mantic retrieval at both the paragraph and sen-
tence level as binary classification problems with
models’ parameters updated by minimizing binary
cross entropy loss. To be specific, we fed the query
and context into BERT as:

[CLS ]Query [SEP ]Context [SEP ]

We applied an affine layer and sigmoid activation
on the last layer output of the [CLS ] token which
is a scalar value. The parameters were updated
with the objective function:

Jretri = �
X

i2Tp/s
pos

log(p̂i)�
X

i2Tp/s
neg

log(1� p̂i)

3We used the pytorch BERT implementation
in https://github.com/huggingface/
pytorch-pretrained-BERT.
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(4) Downstream Modeling: At the final step, we
simply applied task-specific neural models (e.g.,
QA and NLI) on the concatenation of all the sen-

tences in S and the query, obtaining the final out-
put ŷ.

In some experiments, we modified the setup for
certain analysis or ablation purposes which will be
explained individually in Sec 6.

3.1 Modeling and Training

Throughout all our experiments, we used BERT-
Base (Devlin et al., 2018) to provide the state-of-
the-art contextualized modeling of the input text.3

Semantic Retrieval: We treated the neural se-
mantic retrieval at both the paragraph and sen-
tence level as binary classification problems with
models’ parameters updated by minimizing binary
cross entropy loss. To be specific, we fed the query
and context into BERT as:

[CLS ]Query [SEP ]Context [SEP ]

We applied an affine layer and sigmoid activation
on the last layer output of the [CLS ] token which
is a scalar value. The parameters were updated
with the objective function:

Jretri = �
X

i2Tp/s
pos

log(p̂i)�
X

i2Tp/s
neg

log(1� p̂i)

3We used the pytorch BERT implementation
in https://github.com/huggingface/
pytorch-pretrained-BERT.
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