Motivation:
- Effects of intermediate retrieval performance on downstream are not well-studied.
- Relationship between intermediate retrieved facts and the final output will give insights on model development.

Datasets: HotpotQA & FEVER

Background & Motivation

Machine Reading at Scale (MRS) (Chen et al. 2017)

![Query](image)

Model

Intermediate Facts
- Mostly Not Evaluated
- Evaluated

Output

Overall Method

![Diagram](image)

Input
- Retrieval
 - [CLS] Query | [SEP] Context | [SEP]
 - QA
 - [CLS] yes/no Query | [SEP] Context | [SEP]

Objective

\[J_{\text{query}} = - \sum \log(p(y)) - \sum \log(1 - p(y)) \]

Ablation

<table>
<thead>
<tr>
<th>Method</th>
<th>P-Level Retrieval</th>
<th>S-Level Retrieval</th>
<th>Answer Joint</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prec.</td>
<td>Rec.</td>
<td>F1</td>
</tr>
<tr>
<td>Whole Pip.</td>
<td>35.17</td>
<td>87.93</td>
<td>50.25</td>
</tr>
<tr>
<td>Pip. w/o p-level</td>
<td>6.02</td>
<td>89.53</td>
<td>11.19</td>
</tr>
<tr>
<td>Pip. w/o s-level</td>
<td>35.17</td>
<td>87.92</td>
<td>50.25</td>
</tr>
</tbody>
</table>

Table 3: Ablation table over the paragraph-level and sentence-level neural retrieval sub-modules on HotpotQA.

<table>
<thead>
<tr>
<th>Method</th>
<th>P-Level Retrieval</th>
<th>S-Level Retrieval</th>
<th>Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole Pip.</td>
<td>94.15</td>
<td>48.84</td>
<td>91.23</td>
</tr>
<tr>
<td>Pip. w/o p-level</td>
<td>94.69</td>
<td>18.11</td>
<td>92.03</td>
</tr>
<tr>
<td>Pip. w/o s-level</td>
<td>94.15</td>
<td>48.84</td>
<td>91.23</td>
</tr>
</tbody>
</table>

Table 4: Ablation over the paragraph-level and sentence-level neural retrieval sub-modules on FEVER.

Analysis

Figure 1: System Overview.

Figure 2: 200 test results.

Figure 3: The results of EM for supporting fact, answer span prediction, facilitating our direct date systems are asked to select evidential sentence.

Table 5: System performance on different answer types. ‘PN’ is Proper Noun.

Acknowledgement: This work was supported by awards from Venika, Google, Facebook, Salesforce, and Adobe.

Reference:

- Danqi Chen, Adam Flach, Jason Weston, and Antoine Bordes. Reading Wikipedia to answer spoken question answering.