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Development of Al has been driven by benchmarks and datasets.

Computer Vision: |IM /A GE N E T (Russakovsky et al. 2015)

NLP: B{@®ISVA\ D (Rajpurkar et al. 2016),

*IGLUE (Wangetal. 2018)
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Model vs. Human on Static Benchmarks

Superhuman performance achieved
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Model vs. Human on Static Benchmarks
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Model vs. Human on Static Benchmarks
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Superhuman performance achieved
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Are current NLU models ge-r-fuinely as good as their high
performance on static benchmark?
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Overestimated NLU Ability

The state-of-the-art models learn to exploit spurious statistical patterns
and are vulnerable to adversaries.

Adversary for reading comprehension Adversary for natural language inference
(Jia and Liang, 2017) (Nie et al., 2018)

Article: Super Bowl 50 Premise: Two people are sitting in a station. Premise: A group of people prepare hot air balloons for takeoff.
Paragraph: “Peyton Manning became the first quarter- Hypothesis: A couple of people are inside and not standing. | | Hypothesis: There are hot air balloons on the ground and air.
back ever to lead two different teams to multiple Super True Label: entailment Top 3 misleading features True Label: neutral o Top 3 misleading features
. Lexical Linear Model Prediction: » ) Lexical Linear Model Prediction: (hot, hot)
Bowls. He is also the oldest quarterback ever to play ] entaitment Xy I ] entaitment :
in a Super Bowl at age 39. The past record was held | coiradiction not ] contradiction _—
by John Elway, who led the Broncos to victory in Super ] neural standing 1 newnal —
Bowl XXXIII at age 38 and is currently Denver’s Execu- LMS: 0.9632 (to contradiction) LMS: 0.8643 (to entailment)

tive Vice President of Football Operations and General
Manager. Quarterback Jeff Dean had jersey number 37
in Champ Bowl XXXIV.”

Question: “What is the name of the quarterback who
was 38 in Super Bowl XXXIII?”

Original Prediction: John Elway

Prediction under adversary: Jeff Dean
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Overestimated NLU Ability

The state-of-the-art models learn to exploit spurious statistical patterns
and are vulnerable to adversaries.

Adversary for reading comprehension Adversary for natural language inference
(Jia and Liang, 2017) (Nie et al., 2018)

Article: Super Bowl 50 Premise: Two people are sitting in a station. Premise: A group of people prepare hot air balloons for takeoff.
Paragraph: “Peyton Manning became the ﬁrst quarter' Hypothesis: A couple of people are inside and not standing. Hypothesis: There are hot air balloons on the ground and air.
back ever to lead two different teams to multiple Super True Labek: entallment Top 3 misleading features True Label: neutral . Top 3 misleading features
Bowls. He is also the oldest quarterback ever to p lay Lexical Linear Model Prediction: (siting, standing) Lexical Linear Model Prediction: (hot, hot)

. ; [ entailment [ entailment

in a Super Bowl at age 39. The past record was held | coiradiction ] contradiction i

by John Elway, who led the Broncos to victory in Super 1 newa — _—

Bowl XXXIII at age 38 and is curr ently Denver’s Execu- LMS: 0.9632 (to contradiction) LMS: 0.8643 (to entailment)

tive Vice President of Football Operations and General

Manager. Quarterback Jeff Dean had jersey number 37

in Champ Bowl XXXIV.”

Question: “What is the name of the quarterback who » Annotation artifacts (Gururangan et al., 2018, Poliak et al. 2018)
was 38 in Super Bowl XXXIII?” . . . .

Original Prediction: John Elway » Breaking NLI with lexical inference (Glockner et al., 2018)
Prediction under adversary: Jeff Dean = Pathologies of Neural Models (Feng et al., 2018)

» Modeling task or annotator? (Geva et al., 2019)
= Right for the wrong reason (McCoy et al., 2019)
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Performance is Overestimated

Model brittleness can be exposed by researchers or non-experts.

General NLU is still far from achieved despite the high performance.

How to solve the benchmark fast-saturation and robustness issues?
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HAMLET
Human-And-Model-in-the-Loop Enabled Training
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Adversarial NLI (ANLI)

Analogy: white-hat hackers finding vulnerabilities in models, which we then patch for the next round.

Three rounds of data collection.
- Round 1
Model: BERT (Trained on SNLI+MNLI)

Domain: Wikipedia

- Round 2
Model: RoBERTa ensemble (Trained on SNLI+MNLI+FEVER+A1)
Domain: Wikipedia

- Round 3
Model: RoBERTa ensemble (Trained on SNLI+MNLI+FEVER+A1+A2)
Domains: Wikipedia, News, Fiction, Spoken, WikiHow, RTES
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Adversarial NLI (ANLI)

Analogy: white-hat hackers finding vulnerabilities in models, which we then patch for the next round.

Three rounds of data collection.

- Round 1 (A1) Dataset Genre Context Train / Dev / Test
Model: BERT (Trained on SNLI+MNLI) —
Domain: Wikipedia Al Wiki 2,080 16,946/ 1,000 / 1,000
A2 Wiki 2,694 45,460/ 1,000 / 1,000
- Round 2 (A2) A3 Various 6,002 100,459 /1,200 /1,200
Model: RoBERTa ensemble (Trained on SNLI+MNLI+FEVER+A1) (Wiki subset) 1,000 19,920 /200 /200
Domain: Wikipedia ANLI Various 10,776 162,865/ 3,200/ 3,200
- Round 3 (A3) SNLI: 570K
Model: RoBERTa ensemble (Trained on SNLI+MNLI+FEVER+A1+A2) MNLI: 433K
Domains: Wikipedia, News, Fiction, Spoken, WikiHow, RTES
ANLI: 163K
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Adversarial NLI (ANLI)

Analogy: white-hat hackers finding vulnerabilities in models, which we then patch for the next round.

Three rounds of data collection.

- Round 1 (A1) Dataset Genre Context Train / Dev / Test
Model: BERT (Trained on SNLI+MNLI) —
Domain: Wikipedia Al Wiki 2,080 16,946/ 1,000 / 1,000
A2 Wiki 2,694 45,460/ 1,000 / 1,000
- Round 2 (A2) A3 Various 6,002 100,459 /1,200 /1,200
Model: RoBERTa ensemble (Trained on SNLI+MNLI+FEVER+A1) (Wiki subset) 1,000 19,920 /200 /200
Domain: Wikipedia ANLI Various 10,776 162,865/ 3,200/ 3,200
- Round 3 (A3) SNLI: 570K
Model: RoBERTa ensemble (Trained on SNLI+MNLI+FEVER+A1+A2) MNLI: 433K
Domains: Wikipedia, News, Fiction, Spoken, WikiHow, RTES
ANLI: 163K

* Adversarially collected
* More data-efficient in training
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Collection Statistics

Model Error Rate during Median Time (sec.) per Example during
Collection Collection
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Collection Statistics

Model Error Rate during Median Time (sec.) per Example during
Collection Collection
189.6
Error rate halved with 3 rounds "
125.2
B wWiki B Wiki

17.47

I mall mall
A2 A3 A1 A2 A3

Room for improvement on NLI still exists
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Findings

Base model (backend model in the collection) performance is low

Model Training Data Al A2 A3 ANLI ANLI-E | SNLI MNLI-m/-mm

S,M*! 00.0 289 2838 19.8 199 | 913 86.7/86.4
+Al 442 326 293 35.0 342 | 913 86.3/86.5
BERT +A1+A2 573 452 334 44.6 432 | 909 86.3/86.3
+A1+A2+A3 572 49.0 4e6.1 50.5 463 | 909 85.6/85.4
S,M,FANLI 574 483 435 49.3 442 | 904 86.0/85.8
XLNet S,M,FANLI 67.6 50.7 483 55.1 520 | 91.8 89.6/89.4
S,M 476 254 221 31.1 314 | 926 90.8/90.6
+F 540 242 224 32.8 33.7 | 927 90.6/90.5
ROBERTa  +F+A1*? 68.7 193 22.0 35.8 36.8 | 92.8 90.9/90.7
+F+A1+A2* 712 443 204 43.7 414 | 929 91.0/90.7
S,M,FANLI 73.8 489 444 53.7 49.7 | 92.6 91.0/90.6

Table 3: Model Performance. ‘S’ refers to SNLI, ‘M’ to MNLI dev (-m=matched, -mm=mismatched), and ‘F’ to
FEVER; ‘A1-A3’ refer to the rounds respectively and ‘ANLI’ refers to A1+A2+A3, *-E’ refers to test set examples
written by annotators exclusive to the test set. Datasets marked ™’ were used to train the base model for round n,
and their performance on that round is underlined (A2 and A3 used ensembles, and hence have non-zero scores).
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RoBERTa performance on different rounds as we accumulatively

combine training data (S=SNLI, M=MNLI, F=FEVER)

A1

FACEBOOK Al

A2

Chance

A3

S+M

i | UNC
2 L NT P



RoBERTa performance on different rounds as we accumulatively

combine training data (S=SNLI, M=MNLI, F=FEVER)
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RoBERTa performance on different rounds as we accumulatively
combine training data (S=SNLI, M=MNLI, F=FEVER)
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RoBERTa performance on different rounds as we accumulatively
combine training data (S=SNLI, M=MNLI, F=FEVER)
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RoBERTa performance on different rounds as we accumulatively
combine training data (S=SNLI, M=MNLI, F=FEVER)
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RoBERTa performance on different rounds as we accumulatively
combine training data (S=SNLI, M=MNLI, F=FEVER)
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RoBERTa performance on different rounds as we accumulatively

combine training data (S=SNLI, M=MNLI, F=FEVER)
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RoBERTa performance on different rounds as we accumulatively
combine training data (S=SNLI, M=MNLI, F=FEVER)
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RoBERTa (All Data) vs. XLNet (All Data) vs. BERT (All Data)

m RoBERTa (All Data)
m XLNet (All Data)
m BERT(AII)

Different models have different weakness
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RoBERTa performance with different training data
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Model trained only on SNLI and MNLI (statically collected) is not good at ANLI
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RoBERTa performance with different training data
100

= SNLI+MNLI (~900K)
= ANLI-Only  (162K)
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SNLI MNLI-m  MNLI-mm

Model trained only on SNLI and MNLI (statically collected) is not good at ANLI
But Model trained only on ANLI (adversarially collected) is reasonably good at SNLI and MNLI
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RoBERTa performance with different training data
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Model trained only on SNLI and MNLI (statically collected) is not good at ANLI
But Model trained only on ANLI (adversarially collected) is reasonably good at SNLI and MNLI
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RoBERTa performance with different training data
100
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= SNLI+MNLI (~900K)
= ANLI-Only  (162K)
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Model trained only on SNLI and MNLI (statically collected) is not good at ANLI
But model trained only on ANLI (adversarially collected) is reasonably good at SNLI and MNLI
Combining them together helps
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NLI Stress Test

Model SNLI-Hard NLI Stress Tests

AT (m/mm) NR LN (@m/mm) NG @@m/mm) WO (m/mm) SE (m/mm)
Previous models 72.77 14.4/10.2 28.8 58.7/59.4 48.8 /46.6 50.0/50.2 58.3/594
BERT (All) 82.3 75.0/729 65.8 84.2 / 84.6 64.9 /64.4 61.6/60.6 78.3/78.3
XLNet (All) 83.5 88.2/87.1 854 87.5/87.5 59.9/60.0 68.7/66.1 84.3/84.4
RoBERTa (S+M+F) 84.5 81.6/77.2 62.1 88.0/88.5 61.9/61.9 67.9/66.2 86.2 /86.5
RoBERTa (All) 84.7 85.9/82.1 80.6 88.4 / 88.5 62.2/61.9 67.4/65.6 86.3/86.7

All=S+M+F+ANLI;

AT=Antonym; NR=Numerical Reasoning; LN=Length; NG=Negation; WO=Word Overlap SE=Spell Error

Training on ANLI is useful for the Antonym, Numerical Reasoning, and Negation.
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Analysis

What kind of vulnerabilities do annotators find?

Round Numerical & Quant. Reference & Names Standard Lexical Tricky Reasoning & Facts  Quality

Al 38% 13% 18% 13% 22% 53% 4%
A2 132% 20% 1 21% 1 21% 20% 1 59% 3%
A3 10% 18% 27% 27% 27% 63% 3%
Average 27% 17% 22% 22% 23% 58% 3%

Type of inference in the data changed, and so are the model weaknesses.
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Examples

Premise Hypothesis Reason Model Human Linguistic
Prediction Label  Annotation
Kota Ramakrishna Karanth (born May 1,  Kota Ramakrishna Although Kota Entailment  Neutral Standard
1894) was an Indian lawyer and politician  Karanth has a brother Ramakrishna Conjunction,
who served as the Minister of Land who was a novelist Karanth’s brother is a Reasoning
Revenue for the Madras Presidency from  and a politician. novelist, we do not Plausibility
March 1, 1946 to March 23, 1947. He was know if the brother is Likely, Tricky
the elder brother of noted Kannada also a politician Syntactic

novelist K. Shivarama Karanth.
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Discussion

Discussion:
« HAMLET is model-agnostic. (Ensemble different backend models)
* |t can be easily applied to any classification tasks.

What is underexplored?:
* How to extend the framework to generation tasks.
* Cost and time trade-off between adversarial and static data collection.
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Summary

 NLU is far from solved;
« HAMLET (Human-And-Model-in-the-Loop-Enabled-Training);
» We applied it to NLI and collect ANLI;

» The procedure can provide more difficult and iterative benchmarks.

... all of our models smaller than GPT-3 perform at almost exactly random chance on ANLI,

even in the few-shot setting (~33%), whereas GPT-3 itself shows signs of life on Round 3.”

GPT-3 performance on ANLI(A1/A2/A3): 36.8/34.0/40.2

Ideally, in its limit, HAMLET can help converge towards “real NLU”
Adversarial collecting & training help improve robustness
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Thank you

Demo: https://adversarialnli.com/
GitHub: https://github.com/facebookresearch/anli/
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