## Adversarial NLI: A New Benchmark for Natural Language Understanding

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, Douwe Kiela UNC Chapel Hill & Facebook Al Research





Development of AI has been driven by benchmarks and datasets.

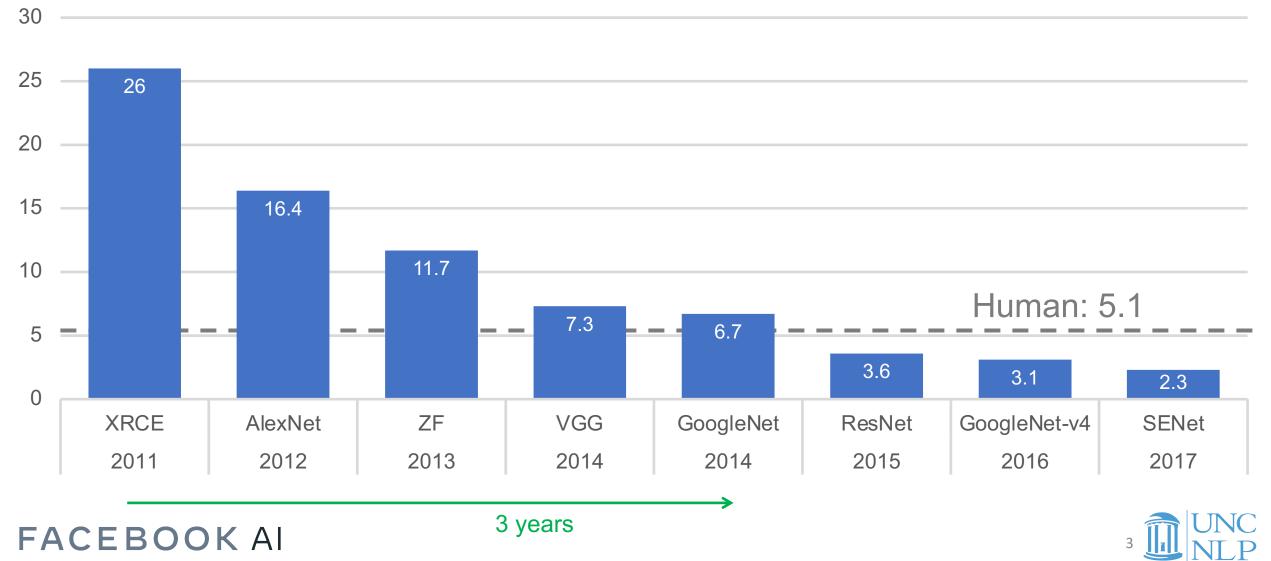
## Computer Vision: IMAGENET (Russakovsky et al. 2015)

NLP: SQUAD (Rajpurkar et al. 2016), SQUAD (Wang et al. 2018)





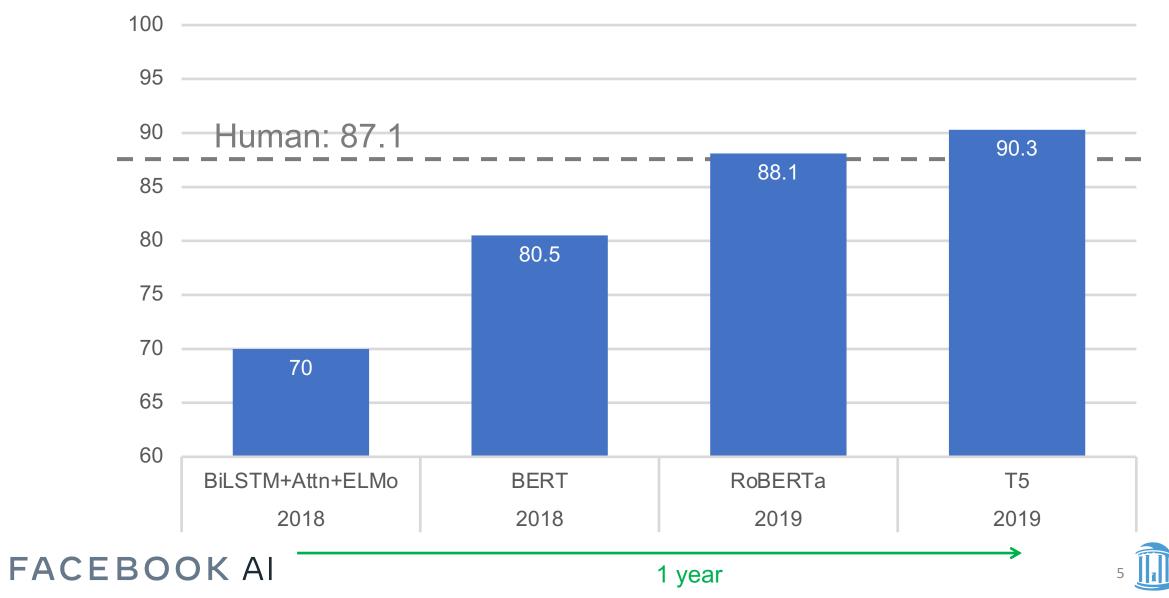




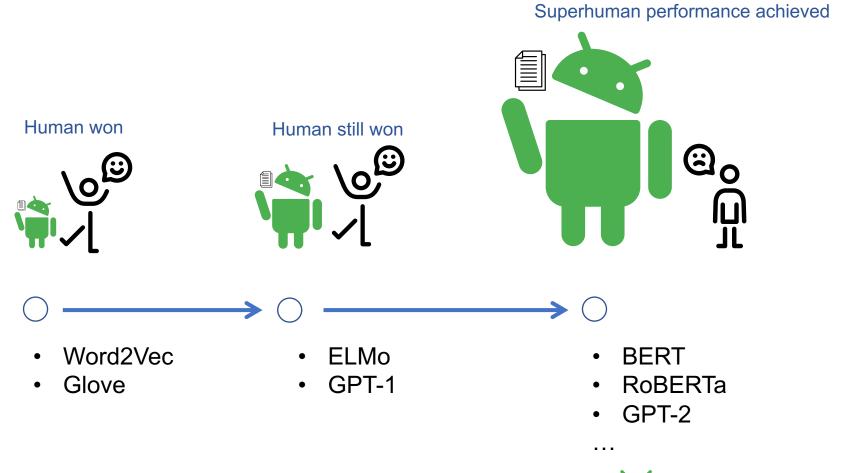






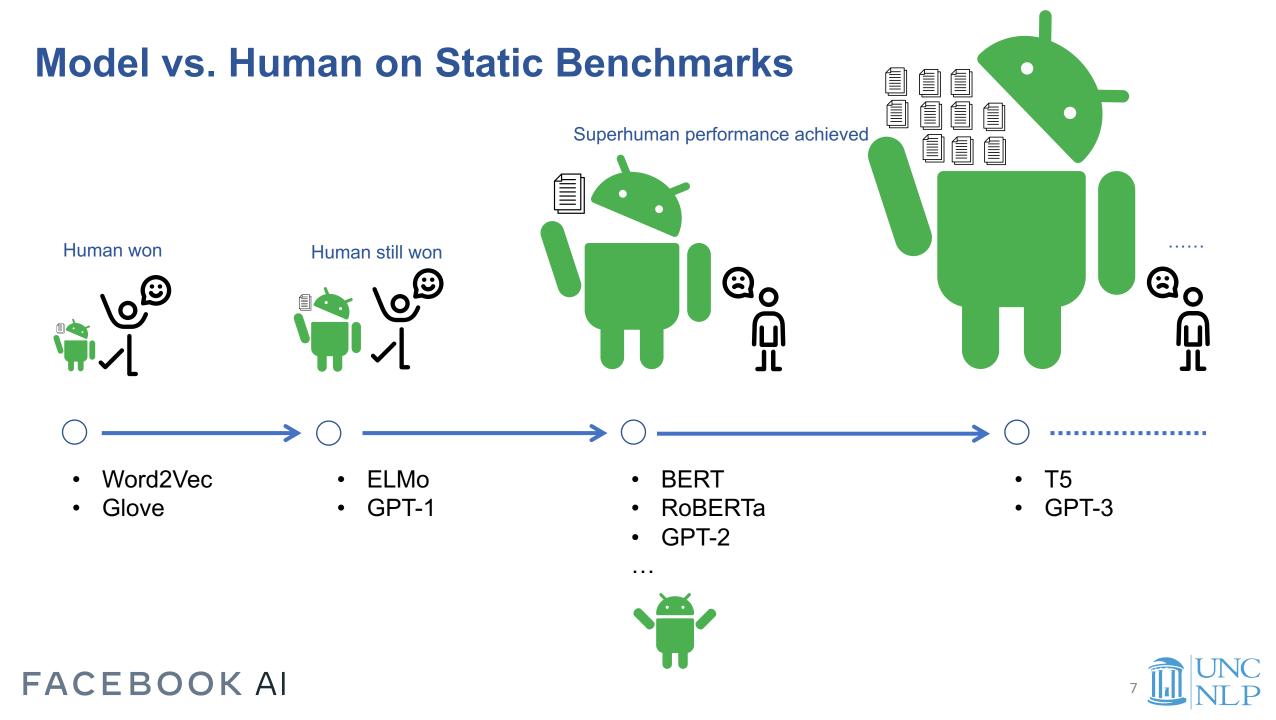


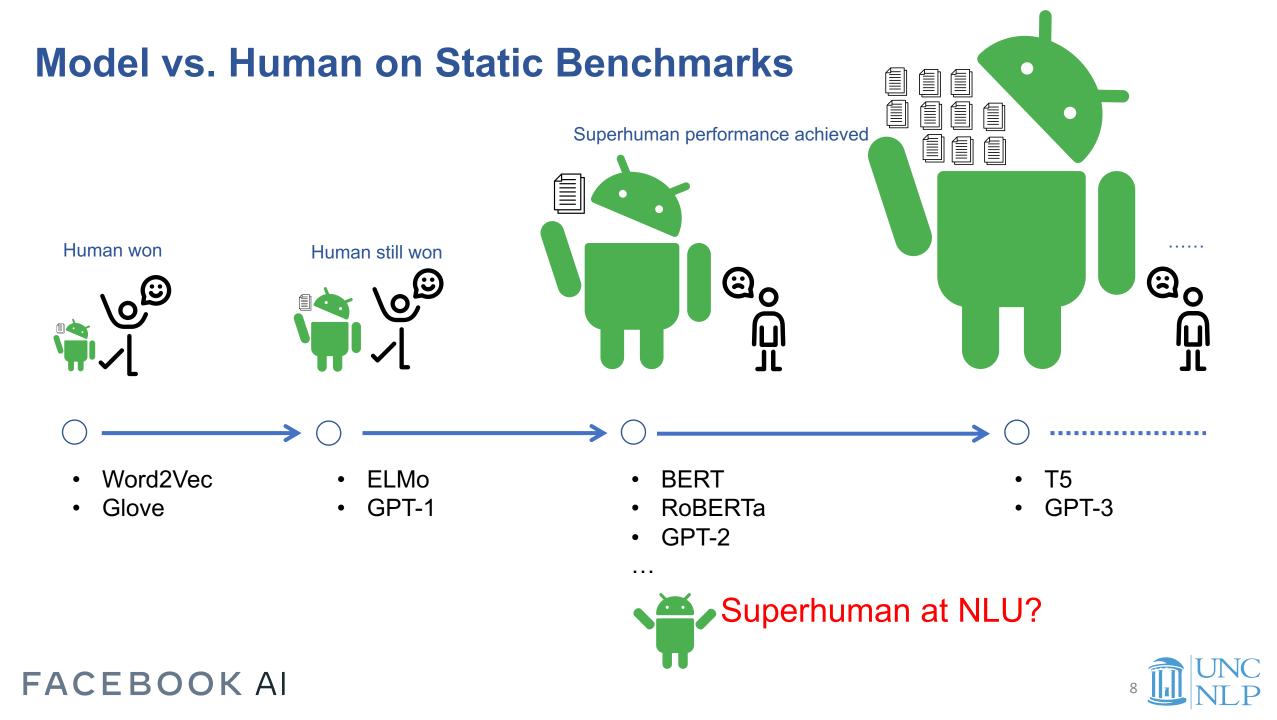
### Model vs. Human on Static Benchmarks

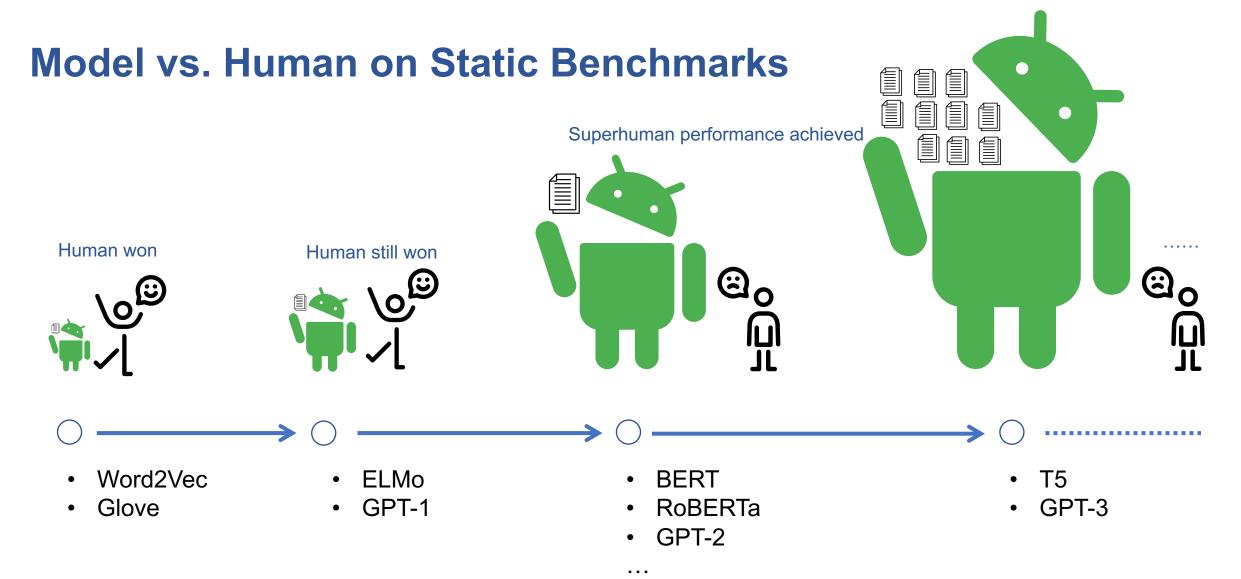












Are current NLU models genuinely as good as their high performance on static benchmark?



## **Overestimated NLU Ability**

The state-of-the-art models learn to exploit spurious statistical patterns and are vulnerable to adversaries.

Adversary for reading comprehension (Jia and Liang, 2017)

Article: Super Bowl 50

**Paragraph:** "Peyton Manning became the first quarterback ever to lead two different teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver's Executive Vice President of Football Operations and General Manager. Quarterback Jeff Dean had jersey number 37 in Champ Bowl XXXIV." **Question:** "What is the name of the quarterback who was 38 in Super Bowl XXXIII?"

Original Prediction: John Elway Prediction under adversary: Jeff Dean

FACEBOOK AI

Adversary for natural language inference (Nie et al., 2018)

| Premise: Two people are sitting in a star<br>Hypothesis: A couple of people are insid                                                        |                                                               | Premise: A group of people prepare hot air balloons for takeoff.<br>Hypothesis: There are hot air balloons on the ground and air. |                                                                        |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--|--|--|
| True Label: entailment Top 3<br>Lexical Linear Model Prediction:<br>entailment<br>contradiction<br>neutral<br>LMS: 0.9632 (to contradiction) | misleading features<br>(sitting, standing)<br>not<br>standing | True Label: neutral To<br>Lexical Linear Model Prediction:<br>                                                                    | p 3 misleading features<br>(hot, hot)<br>there<br>(balloons, balloons) |  |  |  |



## **Overestimated NLU Ability**

The state-of-the-art models learn to exploit spurious statistical patterns and are vulnerable to adversaries.

. . .

Adversary for reading comprehension (Jia and Liang, 2017)

Article: Super Bowl 50

**Paragraph:** "Peyton Manning became the first quarterback ever to lead two different teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver's Executive Vice President of Football Operations and General Manager. Quarterback Jeff Dean had jersey number 37 in Champ Bowl XXXIV."

**Question:** "What is the name of the quarterback who was 38 in Super Bowl XXXIII?" **Original Prediction:** John Elway

Prediction under adversary: Jeff Dean

### FACEBOOK AI

Adversary for natural language inference (Nie et al., 2018)

| Premise: Two people are sitting i<br>Hypothesis: A couple of people ar                                                                                                                      | I | Premise: A group of people prepare hot air balloons for takeoff.<br>Hypothesis: There are hot air balloons on the ground and air. |                                                                          |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|--|--|
| True Label: entailment       Top 3 misleading features         Lexical Linear Model Prediction:       (sitting, standing)         entailment       not         contradiction       standing |   | True Label: neutral T<br>Lexical Linear Model Prediction:<br>entailment<br>contradiction<br>neutral                               | bop 3 misleading features<br>(hot, hot)<br>there<br>(balloons, balloons) |  |  |  |
| LMS: 0.9632 (to contradiction)                                                                                                                                                              | I | LMS: 0.8643 (to entailment)                                                                                                       | 1                                                                        |  |  |  |

- Annotation artifacts (Gururangan et al., 2018, Poliak et al. 2018)
- Breaking NLI with lexical inference (Glockner et al., 2018)
- Pathologies of Neural Models (Feng et al., 2018)
- Modeling task or annotator? (Geva et al., 2019)
- Right for the wrong reason (McCoy et al., 2019)



### **Performance is Overestimated**

Model brittleness can be exposed by researchers or non-experts.

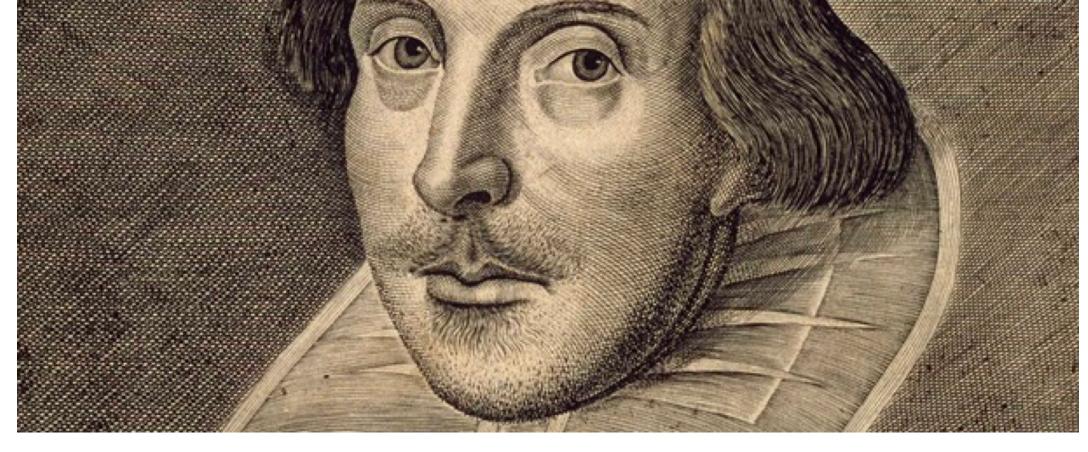
General NLU is still far from achieved despite the high performance.

### How to solve the benchmark **fast-saturation** and **robustness** issues?





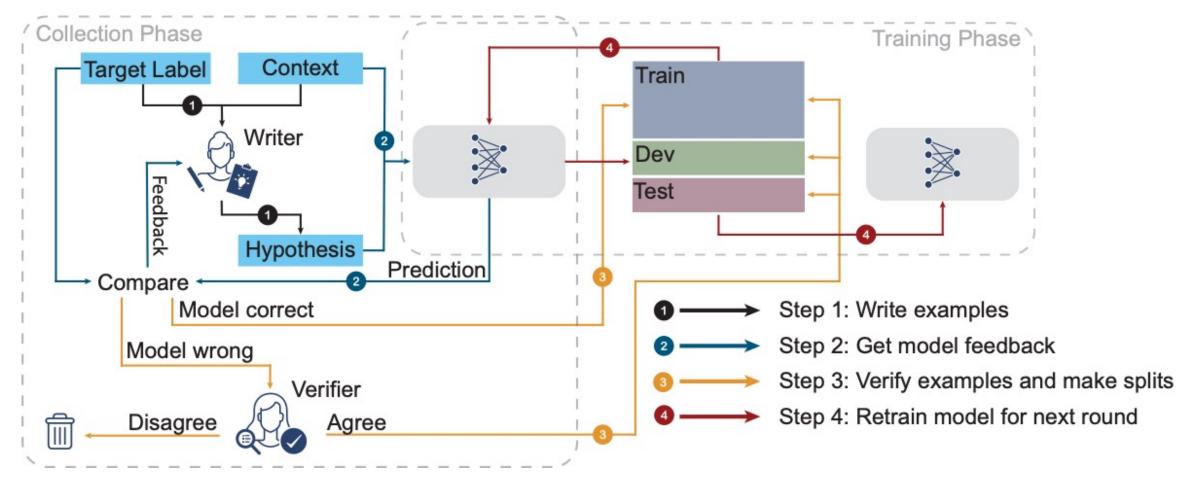
### There is something rotten in the state of the art.







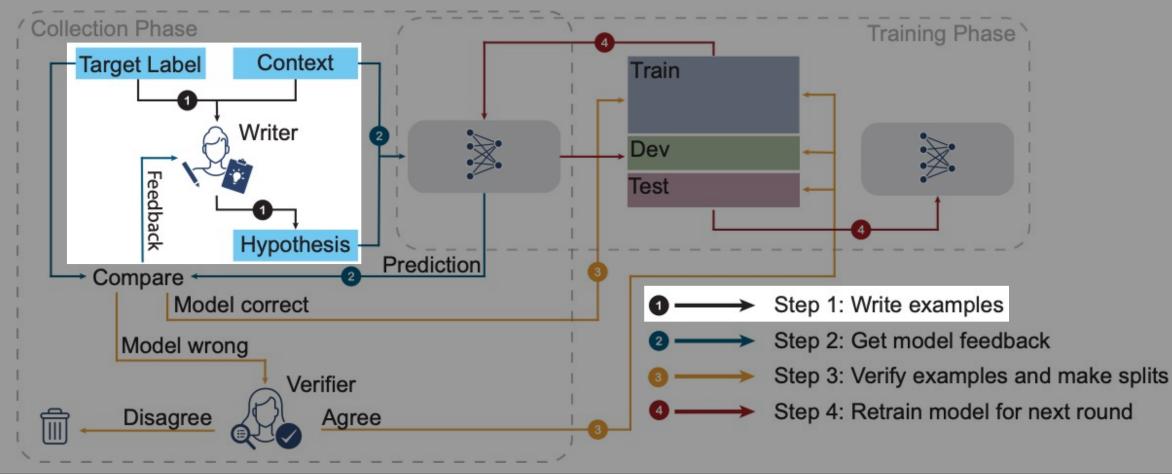




FACEBOOK AI



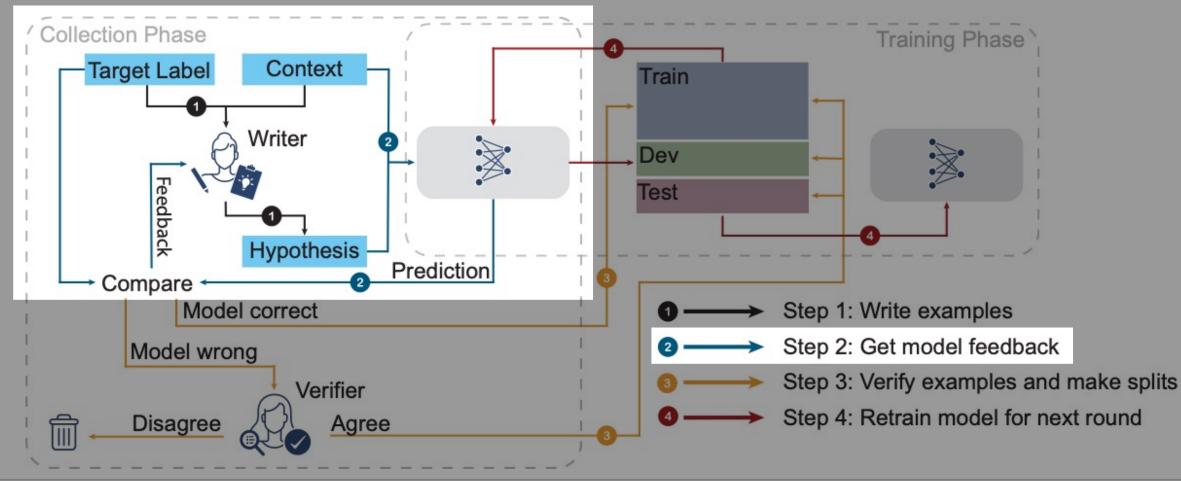




FACEBOOK AI



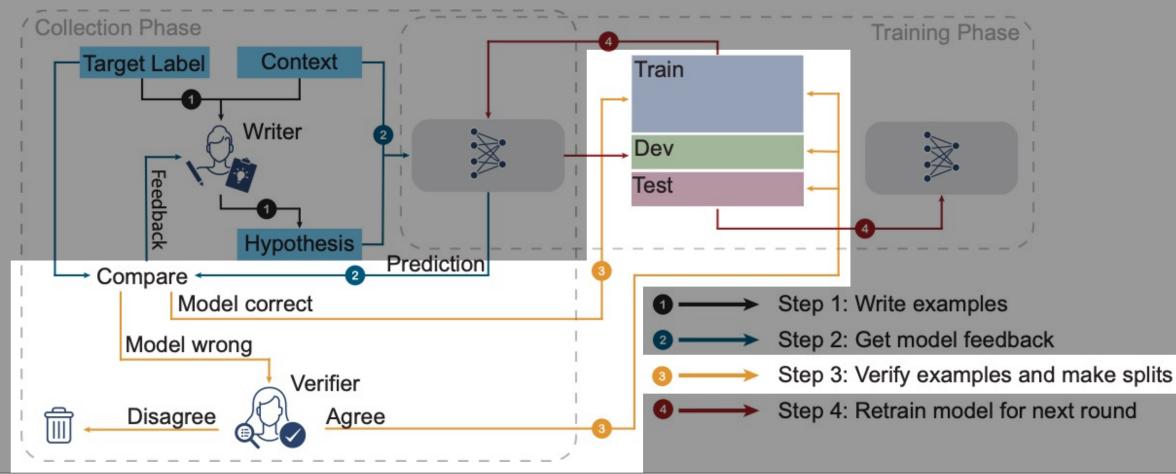




FACEBOOK AI



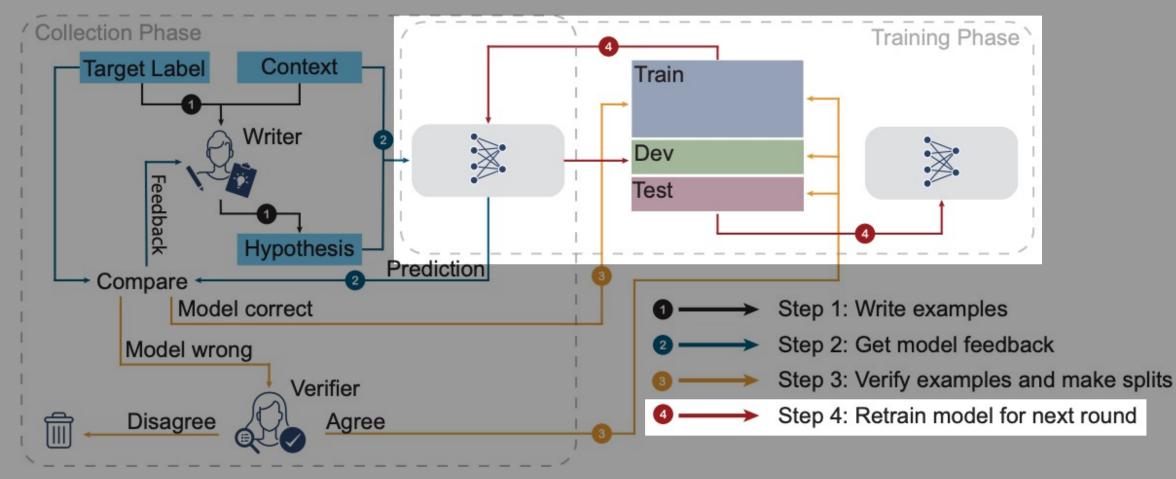




FACEBOOK AI



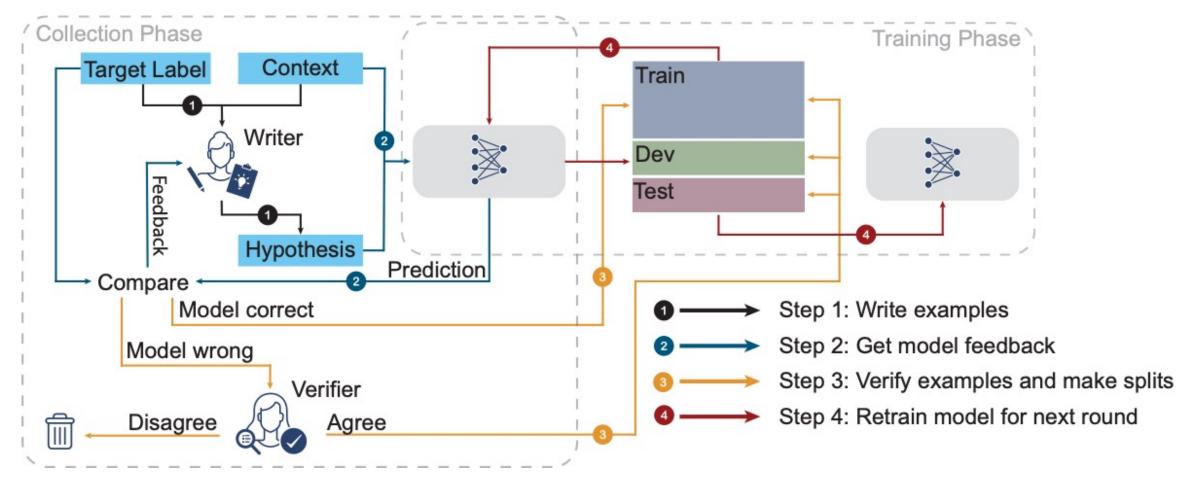




FACEBOOK AI







FACEBOOK AI



### **Related work**

### Adversarial & Human-in-the-Loop

Build It, Break It, Fix It: Contesting Secure Development

James Parker, Michael Hicks, Andrew Ruef, Michelle L. Mazurek, Dave Levin, Daniel Votipka, Piotr Mardziel, Kelsey R. Fulton

Towards Linguistically Generalizable NLP Systems: A Workshop and Shared Task

Allyson Ettinger, Sudha Rao, Hal Daumé III, Emily M. Bender

Universal Adversarial Triggers for Attacking and Analyzing NLP

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, Sameer Singh

#### Mastering the Dungeon: Grounded Language Learning by Mechanical Turker Descent

Zhilin Yang, Saizheng Zhang, Jack Urbanek, Will Feng, Alexander H. Miller, Arthur Szlam, Douwe Kiela, Jason Weston

| Adversarial H                  | it Fix it for Dialogue Safety: Robustness from<br>uman Attack<br>Humeau, Bharath Chintagunta, Jason Weston | Ron        | <b>Iversarial Filters of Dataset Biases</b><br>Ian Le Bras, Swabha Swayamdipta, Chandra Bhagavatula, Rowan Zellers,<br>thew E. Peters, Ashish Sabharwal, Yejin Choi              |
|--------------------------------|------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rowan Zellers, Yonatan Bisk, R |                                                                                                            | ference    | Trick Me If You Can: Human-in-the-loop Generation of<br>Adversarial Examples for Question Answering<br>Eric Wallace, Pedro Rodriguez, Shi Feng, Ikuya Yamada, Jordan Boyd-Graber |
| Adversarial attacks a          | gainst Fact Extraction and VERification                                                                    |            |                                                                                                                                                                                  |
| James Thorne, Andreas Vlachos  | CODAH: An Adversarially Authored                                                                           | -          | n-Answer Dataset for Common Sense                                                                                                                                                |
| FACEBOO                        | Michael Chen, Mike D'Arcy, Alisa Liu, Jared Fernandez, I                                                   | Doug Downe | 20 UNC                                                                                                                                                                           |

## **Adversarial NLI (ANLI)**

Analogy: white-hat hackers finding vulnerabilities in models, which we then patch for the next round.

Three rounds of data collection.

#### - <u>Round 1</u>

Model: BERT (Trained on **SNLI+MNLI**) Domain: Wikipedia

### - <u>Round 2</u> Model: RoBERTa ensemble (Trained on SNLI+MNLI+FEVER+A1) Domain: Wikipedia

#### - <u>Round 3</u>

Model: RoBERTa ensemble (Trained on **SNLI+MNLI+FEVER+A1+A2**) Domains: Wikipedia, News, Fiction, Spoken, WikiHow, RTE5



## **Adversarial NLI (ANLI)**

Analogy: white-hat hackers finding vulnerabilities in models, which we then patch for the next round.

| - <u>Round 1 (A1)</u>                                                                      | Dataset | Genre                    | Context        | Train / Dev / Test                            |
|--------------------------------------------------------------------------------------------|---------|--------------------------|----------------|-----------------------------------------------|
| Model: BERT (Trained on <b>SNLI+MNLI</b> ) –<br>Domain: Wikipedia                          | A1      | Wiki                     | 2,080          | 16,946 / 1,000 / 1,000                        |
| •                                                                                          | A2      | Wiki                     | 2,694          | 45,460 / 1,000 / 1,000                        |
| - <u>Round 2 (A2)</u><br>Model: RoBERTa ensemble (Trained on <b>SNLI+MNLI+FEVER+A1</b> ) _ | A3      | Various<br>(Wiki subset) | 6,002<br>1,000 | 100,459 / 1,200 / 1,200<br>19,920 / 200 / 200 |
|                                                                                            | ANLI    | Various                  | 10,776         | 162,865 / 3,200 / 3,200                       |

#### - Round 3 (A3)

FACEBOOK AI

Model: RoBERTa ensemble (Trained on **SNLI+MNLI+FEVER+A1+A2**) Domains: Wikipedia, News, Fiction, Spoken, WikiHow, RTE5

ANLI: 163K

**SNLI: 570K** 

**MNLI: 433K** 



## **Adversarial NLI (ANLI)**

Analogy: white-hat hackers finding vulnerabilities in models, which we then patch for the next round.

| Three rounds of data collection.<br>- <u>Round 1 (A1)</u>                                                  |      | Genre                    | Context        | Train / Dev / Test                            |
|------------------------------------------------------------------------------------------------------------|------|--------------------------|----------------|-----------------------------------------------|
| Model: BERT (Trained on <b>SNLI+MNLI</b> )<br>Domain: Wikipedia                                            | A1   | Wiki                     | 2,080          | 16,946 / 1,000 / 1,000                        |
|                                                                                                            | A2   | Wiki                     | 2,694          | 45,460 / 1,000 / 1,000                        |
| <ul> <li>- <u>Round 2 (A2)</u></li> <li>Model: RoBERTa ensemble (Trained on SNLI+MNLI+FEVER+A1)</li> </ul> | A3   | Various<br>(Wiki subset) | 6,002<br>1,000 | 100,459 / 1,200 / 1,200<br>19,920 / 200 / 200 |
| omain: Wikipedia                                                                                           | ANLI | Various                  | 10,776         | 162,865 / 3,200 / 3,200                       |

#### - Round 3 (A3)

FACEBOOK AI

Model: RoBERTa ensemble (Trained on **SNLI+MNLI+FEVER+A1+A2**) Domains: Wikipedia, News, Fiction, Spoken, WikiHow, RTE5 SNLI: 570K MNLI: 433K

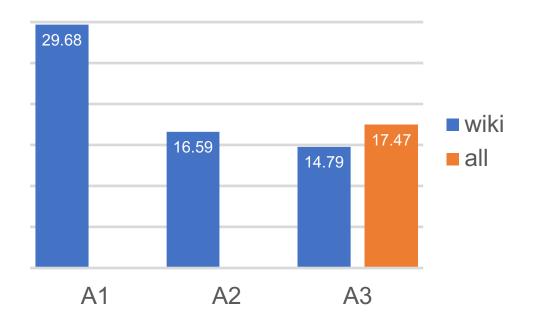
ANLI: 163K

- Adversarially collected
- More data-efficient in training

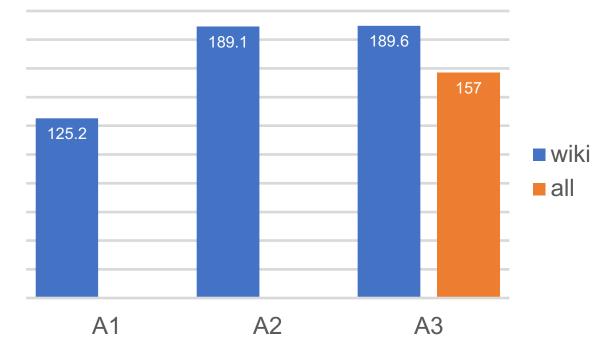


### **Collection Statistics**

Model Error Rate during Collection



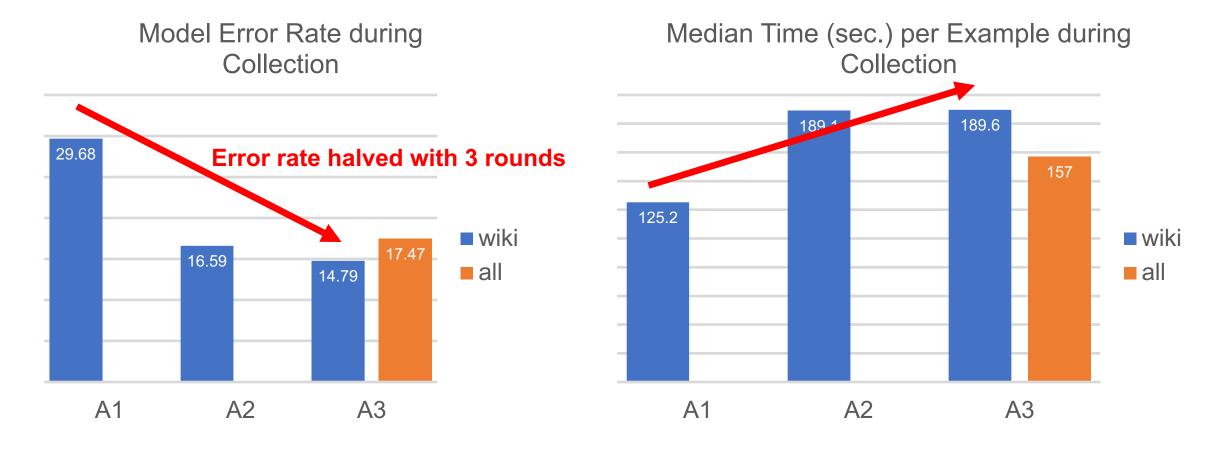
#### Median Time (sec.) per Example during Collection







### **Collection Statistics**



**Room for improvement on NLI still exists** 



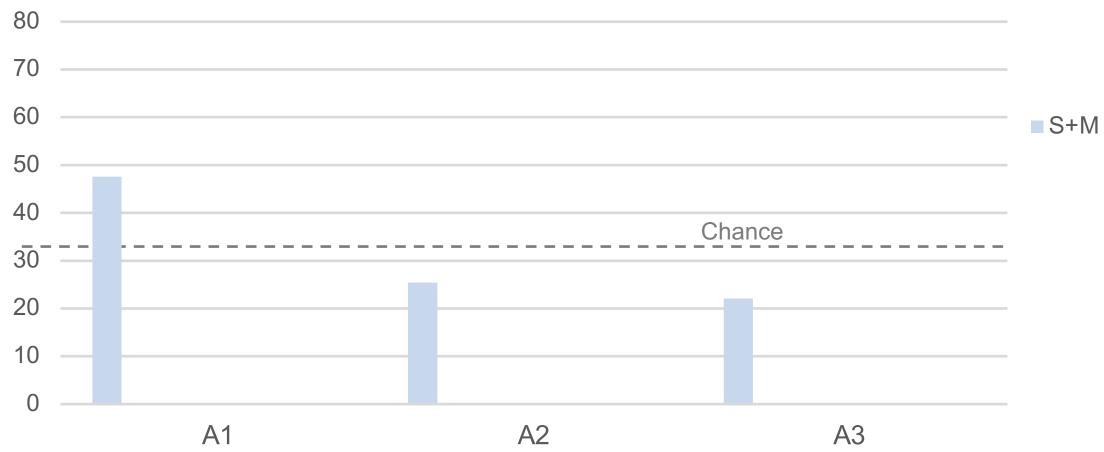
## **Findings**

### Base model (backend model in the collection) performance is low

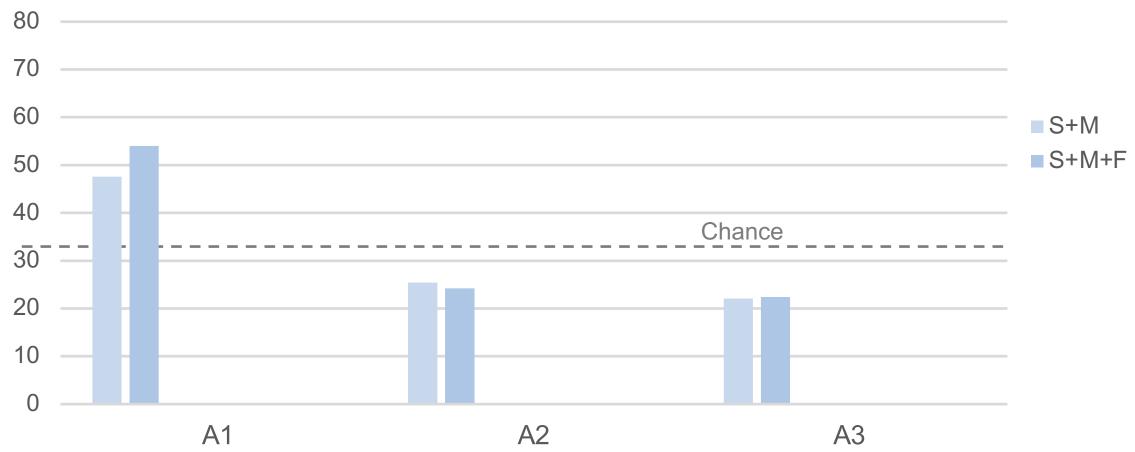
| Model   | Training Data          | A1   | A2          | A3   | ANLI | ANLI-E | SNLI | MNLI-m/-mm  |
|---------|------------------------|------|-------------|------|------|--------|------|-------------|
|         | $S,M^{\star 1}$        | 00.0 | 28.9        | 28.8 | 19.8 | 19.9   | 91.3 | 86.7 / 86.4 |
|         | +A1                    | 44.2 | 32.6        | 29.3 | 35.0 | 34.2   | 91.3 | 86.3 / 86.5 |
| BERT    | +A1+A2                 | 57.3 | 45.2        | 33.4 | 44.6 | 43.2   | 90.9 | 86.3 / 86.3 |
|         | +A1+A2+A3              | 57.2 | 49.0        | 46.1 | 50.5 | 46.3   | 90.9 | 85.6/85.4   |
|         | S,M,F,ANLI             | 57.4 | 48.3        | 43.5 | 49.3 | 44.2   | 90.4 | 86.0 / 85.8 |
| XLNet   | S,M,F,ANLI             | 67.6 | 50.7        | 48.3 | 55.1 | 52.0   | 91.8 | 89.6 / 89.4 |
|         | S,M                    | 47.6 | 25.4        | 22.1 | 31.1 | 31.4   | 92.6 | 90.8 / 90.6 |
|         | +F                     | 54.0 | 24.2        | 22.4 | 32.8 | 33.7   | 92.7 | 90.6 / 90.5 |
| RoBERTa | $+F+A1^{*2}$           | 68.7 | <u>19.3</u> | 22.0 | 35.8 | 36.8   | 92.8 | 90.9 / 90.7 |
|         | +F+A1+A2* <sup>3</sup> | 71.2 | 44.3        | 20.4 | 43.7 | 41.4   | 92.9 | 91.0 / 90.7 |
|         | S,M,F,ANLI             | 73.8 | 48.9        | 44.4 | 53.7 | 49.7   | 92.6 | 91.0/90.6   |

Table 3: Model Performance. 'S' refers to SNLI, 'M' to MNLI dev (-m=matched, -mm=mismatched), and 'F' to FEVER; 'A1–A3' refer to the rounds respectively and 'ANLI' refers to A1+A2+A3, '-E' refers to test set examples written by annotators exclusive to the test set. Datasets marked '\*n' were used to train the base model for round n, and their performance on that round is <u>underlined</u> (A2 and A3 used ensembles, and hence have non-zero scores).

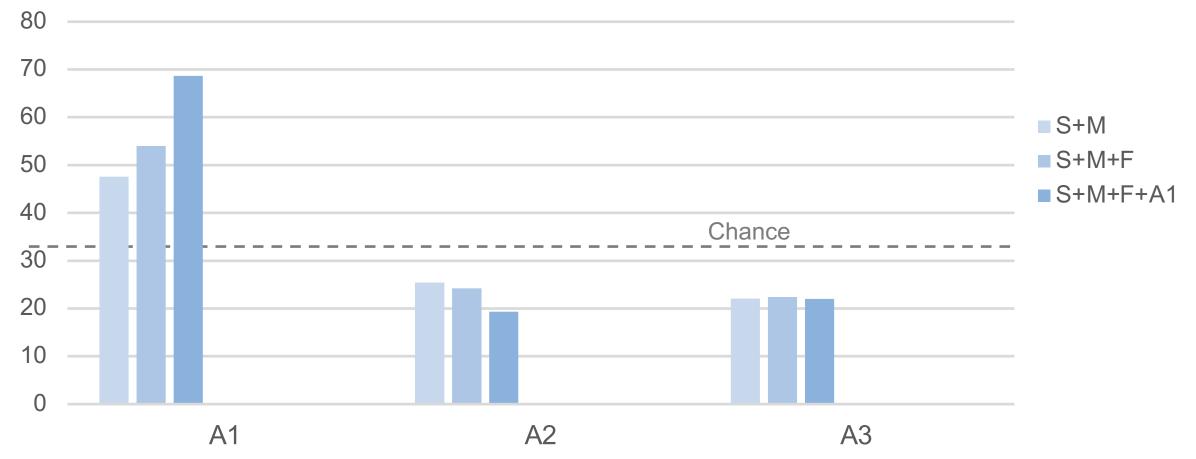






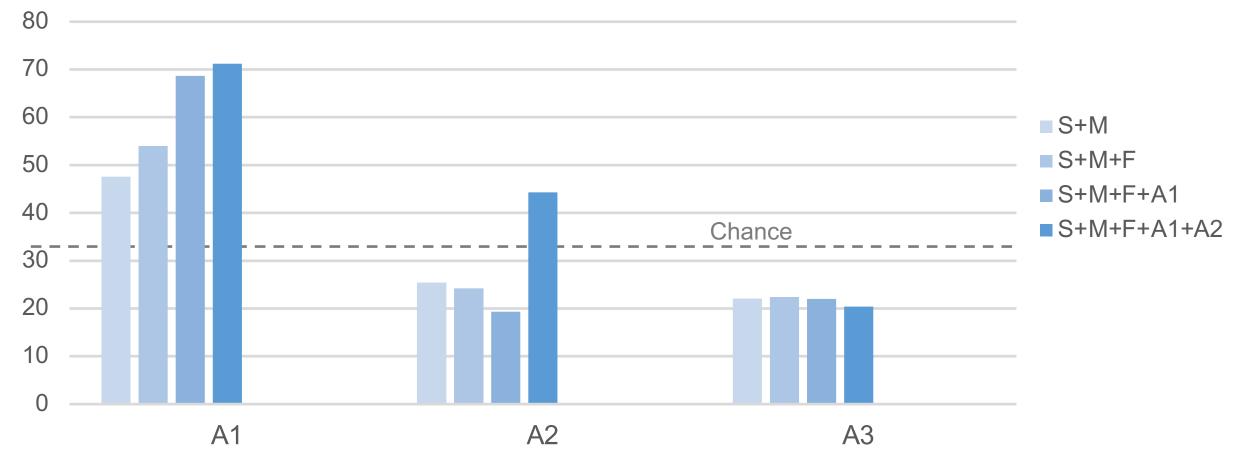




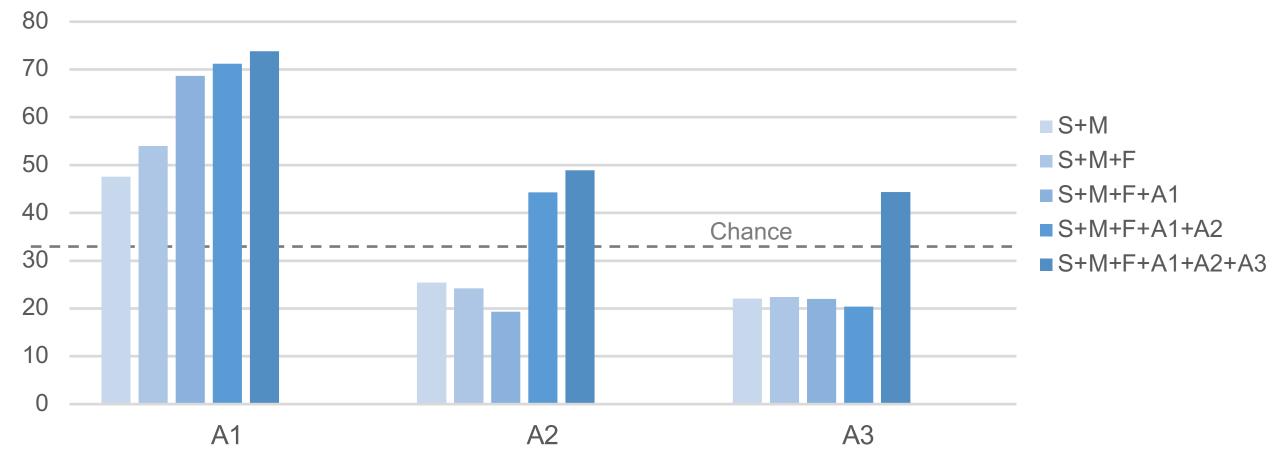


**FACEBOOK AI** 

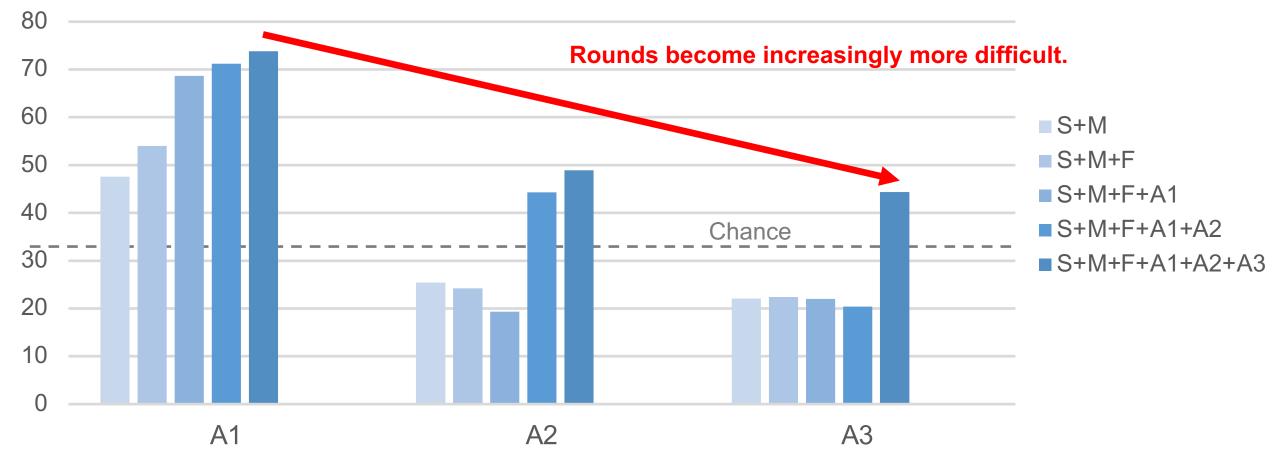
29 UNC NLP



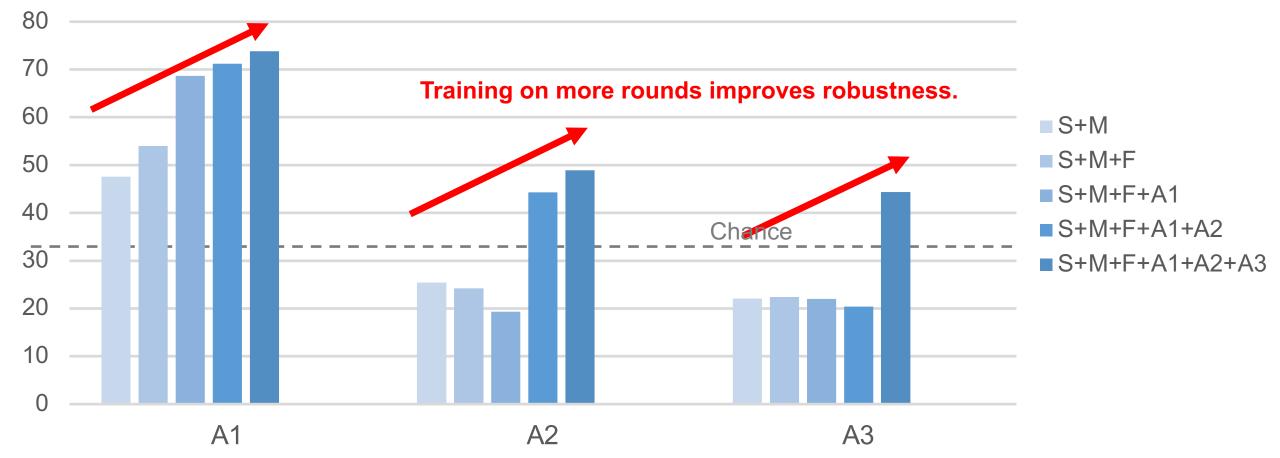




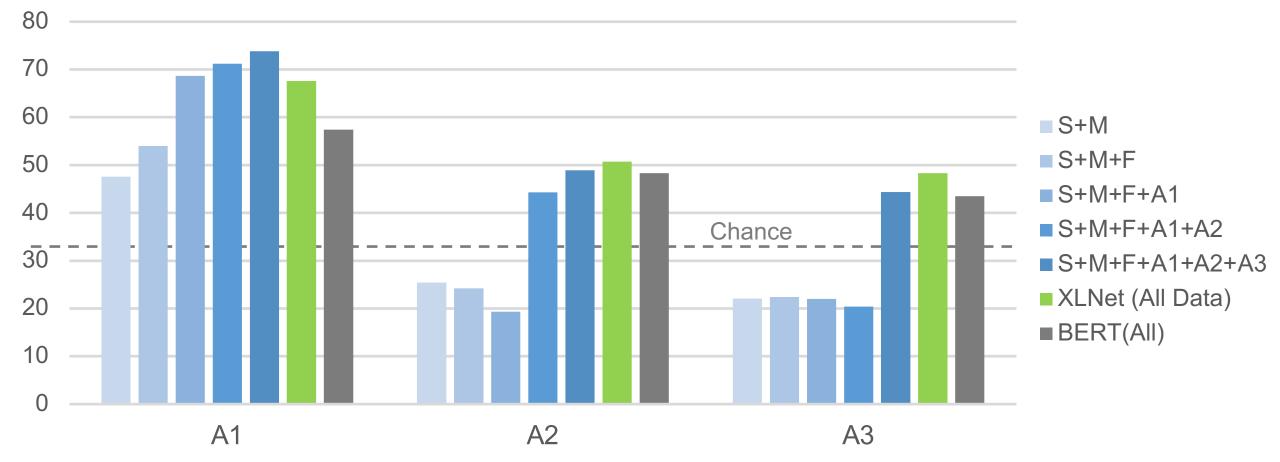






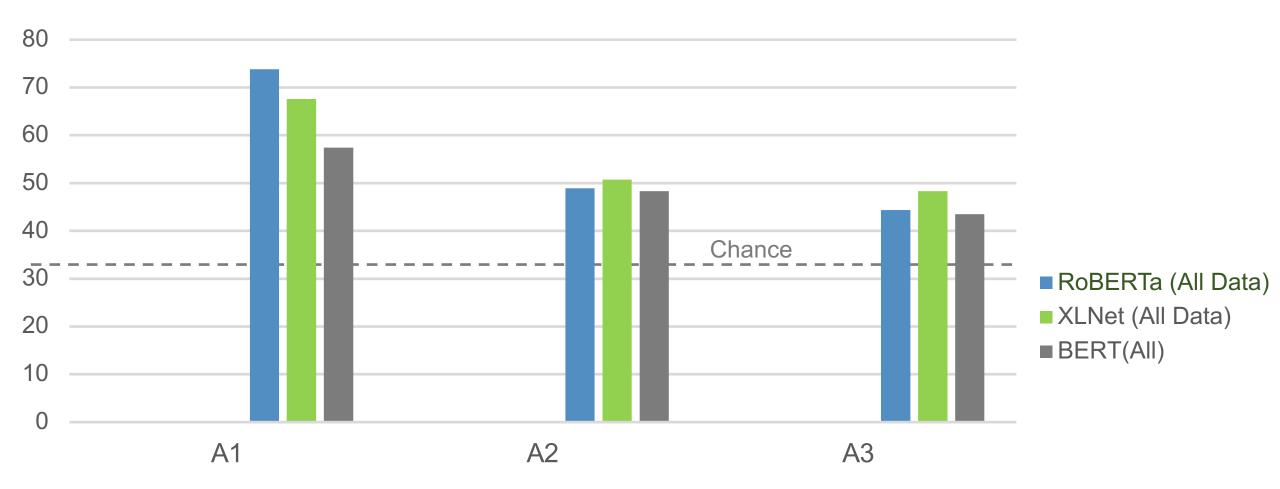






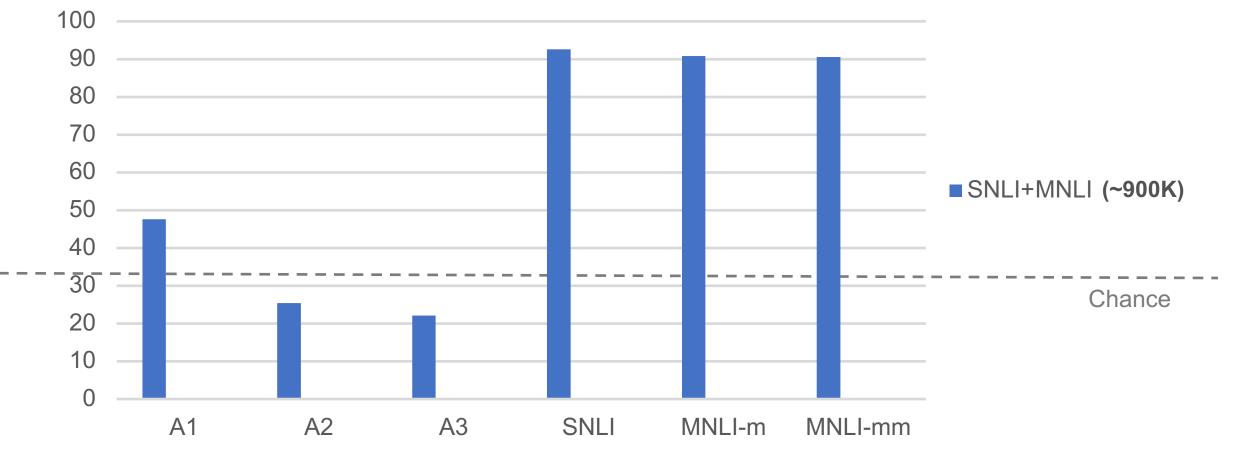


### RoBERTa (All Data) vs. XLNet (All Data) vs. BERT (All Data)



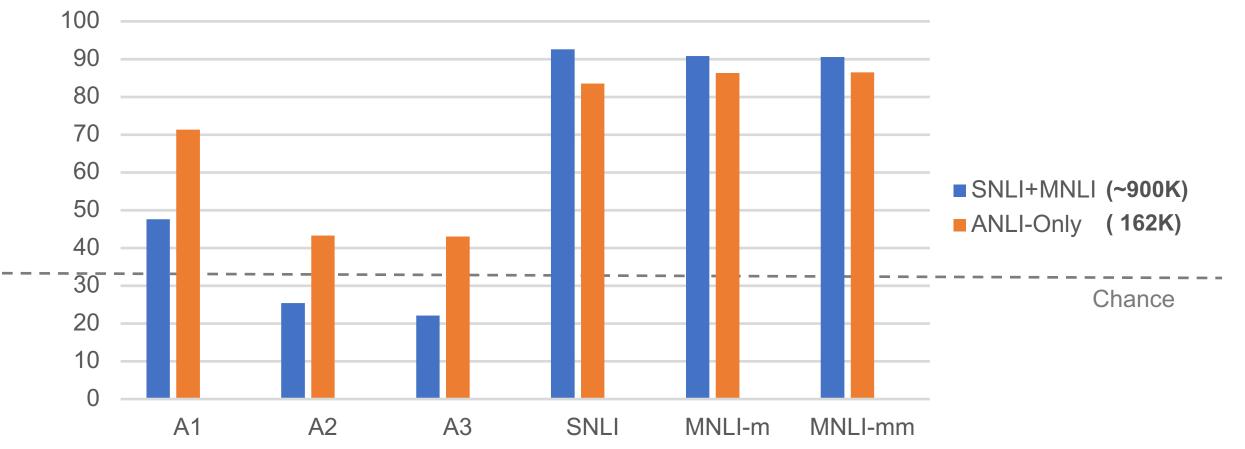
Different models have different weakness





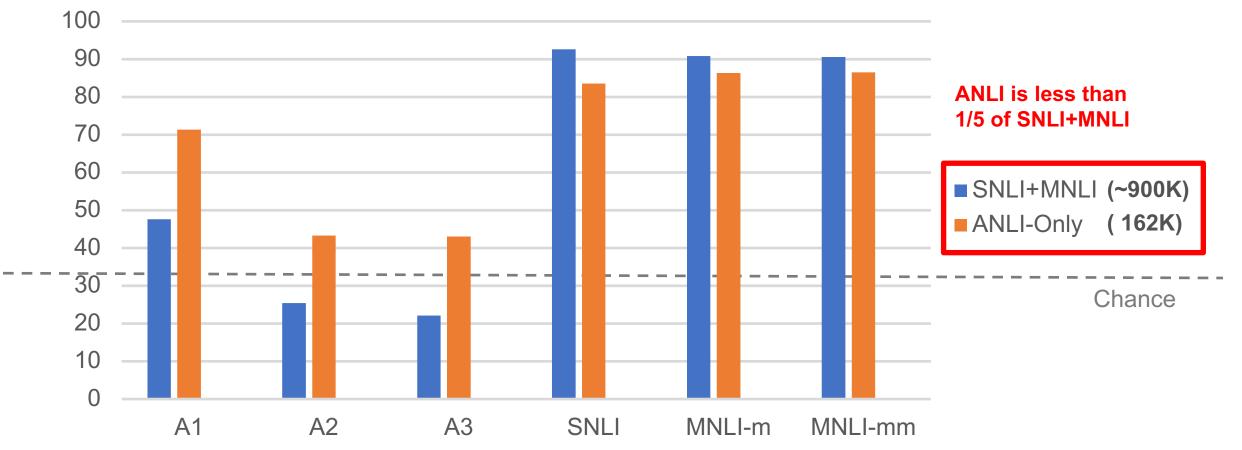
Model trained only on SNLI and MNLI (statically collected) is not good at ANLI





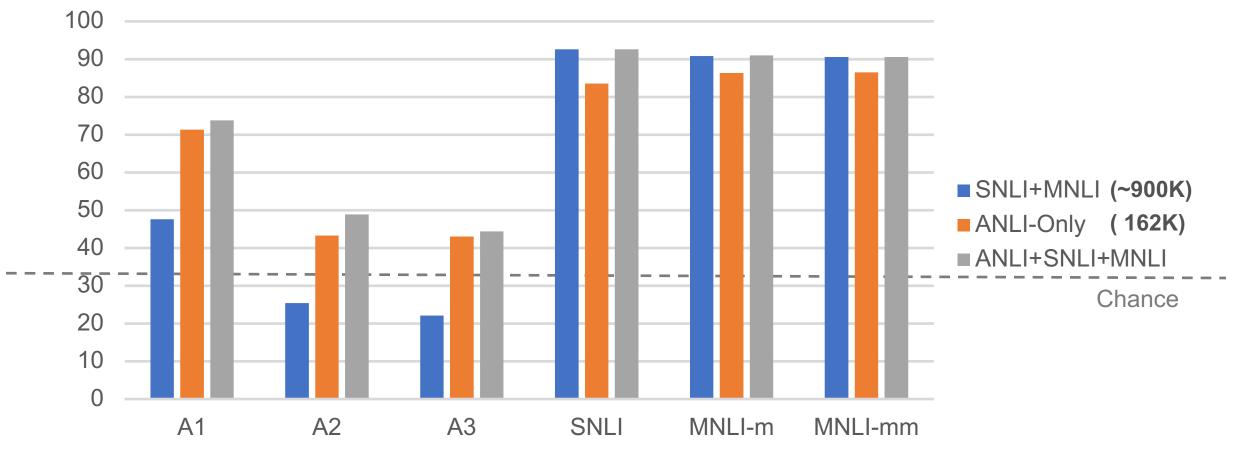
Model trained only on SNLI and MNLI (statically collected) is not good at ANLI But Model trained only on ANLI (adversarially collected) is reasonably good at SNLI and MNLI





Model trained only on SNLI and MNLI (statically collected) is not good at ANLI But Model trained only on ANLI (adversarially collected) is reasonably good at SNLI and MNLI





Model trained only on SNLI and MNLI (statically collected) is not good at ANLI But model trained only on ANLI (adversarially collected) is reasonably good at SNLI and MNLI Combining them together helps FACEBOOK AI

### **NLI Stress Test**

| Model                                                         | SNLI-Hard                    | NLI Stress Tests                                         |                              |                                                          |                                                          |                                                          |                                                          |  |
|---------------------------------------------------------------|------------------------------|----------------------------------------------------------|------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|--|
|                                                               |                              | AT (m/mm)                                                | NR                           | LN (m/mm)                                                | NG (m/mm)                                                | WO (m/mm)                                                | SE (m/mm)                                                |  |
| Previous models                                               | 72.7                         | 14.4 / 10.2                                              | 28.8                         | 58.7 / 59.4                                              | 48.8 / 46.6                                              | 50.0 / 50.2                                              | 58.3 / 59.4                                              |  |
| BERT (All)<br>XLNet (All)<br>RoBERTa (S+M+F)<br>RoBERTa (All) | 82.3<br>83.5<br>84.5<br>84.7 | 75.0 / 72.9<br>88.2 / 87.1<br>81.6 / 77.2<br>85.9 / 82.1 | 65.8<br>85.4<br>62.1<br>80.6 | 84.2 / 84.6<br>87.5 / 87.5<br>88.0 / 88.5<br>88.4 / 88.5 | 64.9 / 64.4<br>59.9 / 60.0<br>61.9 / 61.9<br>62.2 / 61.9 | 61.6 / 60.6<br>68.7 / 66.1<br>67.9 / 66.2<br>67.4 / 65.6 | 78.3 / 78.3<br>84.3 / 84.4<br>86.2 / 86.5<br>86.3 / 86.7 |  |

All=S+M+F+ANLI;

AT=Antonym; NR=Numerical Reasoning; LN=Length; NG=Negation; WO=Word Overlap SE=Spell Error

Training on ANLI is useful for the Antonym, Numerical Reasoning, and Negation.







### What kind of vulnerabilities do annotators find?

| Round   | Numerical & Quant. Reference & Nam |     | Standard | Lexical | Tricky | Reasoning & Facts | Quality |
|---------|------------------------------------|-----|----------|---------|--------|-------------------|---------|
| A1      | ▲ 38%                              | 13% | 18%      | 13%     | 22%    | 53%               | 4%      |
| A2      | 32%                                | 20% | 21%      | 21%     | 20%    | 59%               | 3%      |
| A3      | 10%                                | 18% | 27%      | 27%     | 27%    | 63%               | 3%      |
| Average | 27%                                | 17% | 22%      | 22%     | 23%    | 58%               | 3%      |

Type of inference in the data changed, and so are the model weaknesses.







| Premise                                                                                                                                                                                                                                                                               | Hypothesis                                                                                         | Reason                                                                                                                       | Model<br>Prediction | Human<br>Label | Linguistic<br>Annotation                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------|--------------------------------------------------------------------------------------|
| Kota Ramakrishna Karanth (born May 1,<br>1894) was an Indian lawyer and politician<br>who served as the Minister of Land<br>Revenue for the Madras Presidency from<br>March 1, 1946 to March 23, 1947. He was<br>the elder brother of noted Kannada<br>novelist K. Shivarama Karanth. | Kota Ramakrishna<br>Karanth has a <mark>brother<br/>who was a novelist</mark><br>and a politician. | Although Kota<br>Ramakrishna<br>Karanth's brother is a<br>novelist, we do not<br>know if the brother is<br>also a politician | Entailment          | Neutral        | Standard<br>Conjunction,<br>Reasoning<br>Plausibility<br>Likely, Tricky<br>Syntactic |



### Discussion

### **Discussion:**

- HAMLET is model-agnostic. (Ensemble different backend models)
- It can be easily applied to any classification tasks.

### What is underexplored?:

- How to extend the framework to generation tasks.
- Cost and time trade-off between adversarial and static data collection.





## Summary

- NLU is far from solved;
- HAMLET (Human-And-Model-in-the-Loop-Enabled-Training);
- We applied it to NLI and collect ANLI;
- The procedure can provide more difficult and iterative benchmarks.

*"… all of our models smaller than GPT-3 perform at almost exactly random chance on ANLI, even in the few-shot setting (~33%), whereas GPT-3 itself shows signs of life on Round 3."* 

GPT-3 performance on ANLI(A1/A2/A3): 36.8/34.0/40.2

Ideally, in its limit, HAMLET can help converge towards "real NLU" Adversarial collecting & training help improve robustness



# Thank you

Demo: <u>https://adversarialnli.com/</u>

GitHub: <u>https://github.com/facebookresearch/anli/</u>



