Analyzing Compositionality-Sensitivity of NLI
Models

Yixin Nie*, Yicheng Wang*, Mohit Bansal

1 | UNC
NLP



Eason
Sticky Note
Hi, today we will talk about the analysis of compositionality-sensitivity of natural language inference models. This work is done jointly by me, Yixin Nie, my co-author Yicheng Wang, and our advisor Mohit Bansal at UNC-Chapel Hill. 


Natural Language Inference

Text Judgments Hypothesis

A man inspects the uniform of a figure in some contradiction _ _
. The man is sleeping
East Asian country. CCCCC

- neutral Two men are smiling and laughing at the
An older and younger man smiling.

NNENN cats playing on the floor.

A black race car starts up in front of a crowd of contradiction -
A man is driving down a lonely road.

people. CCCCC
_ . _ entailment _
A soccer game with multiple males playing. —EEEE Some men are playing a sport.
A smiling costumed woman is holding an neutral A happy woman in a fairy costume holds an
umbrella. NNECN umbrella.

(Premise, Hypothesis) - Label { Entailment, Contradiction, Neutral }
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Natural language inference, or NLI, is a task in which a system is asked to classify the relationship between a pair of sentences, known as the premise and the hypothesis as one of either entailment, contradiction, or neutral. Where entailment means that the hypothesis is true if the premise is true, contradiction means that the hypothesis is false if the premise is true, and neutral means that the truth value of the hypothesis is not determined by the premise. 


Importance of NLI

The concepts of entailment and contradiction are central to all
aspects of natural language meaning.
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NLI is an important task in NLP as performing logical inference over natural language is a central aspect of natural language understanding. 


Importance of NLI

Building computation systems that can recognize these relationships is
essential to many NLP tasks such as question answering and
summarization.
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Therefore, building computation systems that can recognize these logical relationships is the cornerstone to many higher-level natural language understanding tasks such as question answering and summarization. 


Difficulty of NLI

At a high level, NLI is a complicated task with many components.
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At a high level, NLI is a complicated task with many components. 


Difficulty of NLI

Intuitively, success in natural language inference needs a high degree of
sentence-level understanding.
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Success in natural language inference requires a system to have a high degree of sentence-level understanding. 


Difficulty of NLI

Sentence-level understanding requires a model to capture both lexical
and compositional semantics.
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Which requires a system to capture both lexical and compositional semantics. However, as we see from our analysis, this does not seem to be the case for most current state-of-the-art models. 


Datasets

» Stanford Natural Language Inference (SNLI)
570k pairs (image caption genre)

* Multi-Genre Natural Language Inference (MNLI)
433k pairs (multiple genres e.g. news, fiction)
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There are two main datasets for natural language inference: the Stanford Natural Language Inference dataset and the more recent Multi-Genre Natural Language Inference dataset. Together they provide more than 1 million annotated sentence pairs. 


Models

v v

Trained on provided training set.

v
predicted label
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These large-scale datasets prompted the developments of large-scale data-driven end-to-end neural models for NLI, which are trained the same way any neural model is trained: an architecture of the neural network is proposed, training data is fed into it, backprop, convergence, and the trained model is tested on an held-out test set, and is compared with all other existing models.  


Current Model and Motivation

SNLI leaderboard

Other neural network models

Rocktaschel et al. '15
Pengfei Liu et al. "16a
Yang Liuetal.'16
Pengfei Liu et al. '16b
Munkhdalai & Yu '16a
Wang & Jiang '15
Jianpeng Cheng et al. '16
Jianpeng Cheng et al. '16
Parikh et al. '16
Parikh et al. "16
Munkhdalai & Yu "16b
Zhiguo Wang et al. '17
LeiShaetal.'16
Yichen Gong et al. "17
McCann et al. '17
ChuangiTan et al.'18
Xiaodong Liu et al. '18
Ghaeini et al. '18
YiTay etal.'18

Qian Chen etal.'17
Qian Chen etal.'16
Petersetal. "8
Boyuan Pan etal. '18
Zhiguo Wang et al. '17
Yichen Gong et al. 17

Seonhoon Kim et al. '18

100D LSTMs w/ word-by-word attention
100D DF-LSTM

600D (300+300) BiLSTM encoders with intra-attention and symbolic preproc.

50D stacked TC-LSTMs

300D MMA-NSE encoders with attention

300D mLSTM word-by-word attention model

300D LSTMN with deep attention fusion

450D LSTMN with deep attention fusion

200D decomposable attention model

200D decomposable attention model with intra-sentence attention
300D Full tree matching NTI-SLSTM-LSTM w/ global attention
BiMPM

300D re-read LSTM

448D Densely Interactive Inference Network (DIIN, code)
Biattentive Classification Network + CoVe + Char

150D Multiway Attention Network

Stochastic Answer Network

450D DR-BiLSTM

300D CAFE

KIM

600D ESIM + 300D Syntactic TreeLSTM (code)

ESIM + ELMo

300D DMAN

BiMPM Ensemble

448D Densely Interactive Inference Network (DIIN, code) Ensemble

Densely-Connected Recurrent and Co-Attentive Network

Zhuosheng Zhang et al. '18 SLRC

Qian Chenetal.'17

Ghaeini et al. '18

KIM Ensemble
450D DR-BiLSTM Ensemble

250k
320k
2.8m
190k
3.2m
1.9m
1.7m
3.4m
380k
580k
3.2m
1.6m
2.0m
4.4m
22m

14m
3.5m
7.5m
4.7m
4.3m
7.7m
8.0m
9.2m
6.4m

17m
6.7m
6.1m
43m
45m

85.3
85.2
85.9
86.7
86.9
92.0
873
88.5
89.5
90.5
88.5
90.9
90.7
91.2
88.5
94.5
B
94.1
89.8
94.1
93.5
91.6
95.4
93.2
92.3
93.1
89.1
93.6
94.8

83.5
84.6
85.0
85.1
85.4
86.1
85.7
86.3
86.3
86.8
87.3
87.5
87.5
88.0
88.1
88.3
88.5
88.5
88.5
88.6
88.6
88.7
88.8
88.8
88.9
88.9
89.1
89.1
89.3

Despite their high performance, it is unclear if
models employ semantic understanding or are

simply performing shallow pattern matching.
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If we look at the leaderboard of SNLI, we see an astonishing rate at which the results of these neural models advance: in the past two years, performance has increased by about 10% in accuracy, and have now surpassed estimated human performance. But despite their high performance, it is unclear if models employ semantic understanding or are simply performing shallow pattern matching. 


Current Model and Motivation

SNLI leaderboard

Other neural network models

Rocktaschel et al. '15
Pengfei Liu et al. "16a
Yang Liuetal.'16
Pengfei Liu et al. '16b
Munkhdalai & Yu '16a
Wang & Jiang '15
Jianpeng Cheng et al. '16
Jianpeng Cheng et al. '16
Parikh et al. '16
Parikh et al. "16
Munkhdalai & Yu "16b
Zhiguo Wang et al. '17
LeiShaetal.'16
Yichen Gong et al. "17
McCann et al. '17
ChuangiTan et al.'18
Xiaodong Liu et al. '18
Ghaeini et al. '18
YiTay etal.'18

Qian Chen etal.'17
Qian Chen etal.'16
Petersetal. "8
Boyuan Pan etal. '18
Zhiguo Wang et al. '17
Yichen Gong et al. 17

Seonhoon Kim et al. '18

100D LSTMs w/ word-by-word attention
100D DF-LSTM

600D (300+300) BiLSTM encoders with intra-attention and symbolic preproc.

50D stacked TC-LSTMs

300D MMA-NSE encoders with attention

300D mLSTM word-by-word attention model

300D LSTMN with deep attention fusion

450D LSTMN with deep attention fusion

200D decomposable attention model

200D decomposable attention model with intra-sentence attention
300D Full tree matching NTI-SLSTM-LSTM w/ global attention
BiMPM

300D re-read LSTM

448D Densely Interactive Inference Network (DIIN, code)
Biattentive Classification Network + CoVe + Char

150D Multiway Attention Network

Stochastic Answer Network

450D DR-BiLSTM

300D CAFE

KIM

600D ESIM + 300D Syntactic TreeLSTM (code)

ESIM + ELMo

300D DMAN

BiMPM Ensemble

448D Densely Interactive Inference Network (DIIN, code) Ensemble

Densely-Connected Recurrent and Co-Attentive Network

Zhuosheng Zhang et al. '18 SLRC

Qian Chen etal.'17

Ghaeini et al. '18

KIM Ensemble
450D DR-BiLSTM Ensemble

250k
320k
2.8m
190k
3.2m
1.9m
1.7m
3.4m
380k
580k
3.2m
1.6m
2.0m
4.4m
22m

14m
3.5m
7.5m
4.7m
4.3m
7.7m
8.0m
9.2m
6.4m

17m
6.7m
6.1m
43m
45m

85.3
85.2
85.9
86.7
86.9
92.0
873
88.5
89.5
90.5
88.5
90.9
90.7
91.2
88.5
94.5
B
94.1
89.8
94.1
93.5
91.6
95.4
93.2
92.3
93.1
89.1
93.6
94.8

83.5
84.6
85.0
85.1
85.4
86.1
85.7
86.3
86.3
86.8
87.3
87.5
87.5
88.0
88.1
88.3
88.5
88.5
88.5
88.6
88.6
88.7
88.8
88.8
88.9
88.9
89.1
89.1
89.3

Counterintuitive model designs indicate an OVer=
focus on lexical information, which is
different from human reasoning.
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What really pushed the advancement on these metrics is attention mechanisms and pooling mechanisms. However, these seem to be fundamentally not-suited for the task as both of these mechanisms more or less ignore word-order information and thus have limited ability to capture compositional information. Overall, it seems that the models have an over-focus on lexical information, which is different from human reasoning. 


Current Model and Motivation

SNLI leaderboard

Other neural network models

Rocktaschel et al. '15
Pengfei Liu et al. "16a
Yang Liuetal.'16
Pengfei Liu et al. '16b
Munkhdalai & Yu '16a
Wang & Jiang '15
Jianpeng Cheng et al. '16
Jianpeng Cheng et al. '16
Parikh et al. '16
Parikh et al. "16
Munkhdalai & Yu "16b
Zhiguo Wang et al. '17
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McCann et al. '17
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300D MMA-NSE encoders with attention

300D mLSTM word-by-word attention model

300D LSTMN with deep attention fusion

450D LSTMN with deep attention fusion

200D decomposable attention model

200D decomposable attention model with intra-sentence attention
300D Full tree matching NTI-SLSTM-LSTM w/ global attention
BiMPM

300D re-read LSTM

448D Densely Interactive Inference Network (DIIN, code)
Biattentive Classification Network + CoVe + Char

150D Multiway Attention Network

Stochastic Answer Network

450D DR-BiLSTM

300D CAFE

KIM

600D ESIM + 300D Syntactic TreeLSTM (code)

ESIM + ELMo

300D DMAN

BiMPM Ensemble

448D Densely Interactive Inference Network (DIIN, code) Ensemble

Densely-Connected Recurrent and Co-Attentive Network

Zhuosheng Zhang et al. '18 SLRC

Qian Chenetal.'17

Ghaeini et al. '18

KIM Ensemble
450D DR-BiLSTM Ensemble

250k
320k
2.8m
190k
3.2m
1.9m
1.7m
3.4m
380k
580k
3.2m
1.6m
2.0m
4.4m
22m

14m
3.5m
7.5m
4.7m
4.3m
7.7m
8.0m
9.2m
6.4m

17m
6.7m
6.1m
43m
45m

85.3
85.2
85.9
86.7
86.9
92.0
873
88.5
89.5
90.5
88.5
90.9
90.7
91.2
88.5
94.5
B
94.1
89.8
94.1
93.5
91.6
95.4
93.2
92.3
93.1
89.1
93.6
94.8

83.5
84.6
85.0
85.1
85.4
86.1
85.7
86.3
86.3
86.8
87.3
87.5
87.5
88.0
88.1
88.3
88.5
88.5
88.5
88.6
88.6
88.7
88.8
88.8
88.9
88.9
89.1
89.1
89.3

This motivates our analytic study of models’
compositionality-sensitivity.
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This motivates our analytic study of models’ compositional-sensitivity. 


Current Model and Motivation

SNLI leaderboard

Other neural network models

Rocktaschel et al. '15 100D LSTMs w/ word-by-word attention 250k 85.3 83.5
Pengfei Liu et al. '16a 100D DF-LSTM 320k 85.2 84.6
Yang Liuetal.'16 600D (300+300) BiLSTM encoders with intra-attention and symbolic preproc. 2.8m 85.9 85.0
Pengfei Liu et al. '16b 50D stacked TC-LSTMs 190k 86.7 85.1
Munkhdalai & Yu '16a 300D MMA-NSE encoders with attention 3.2m 86.9 85.4
Wang & Jiang '15 300D mLSTM word-by-word attention model 1.9m 92.0 86.1
Jianpeng Cheng et al."16 300D LSTMN with deep attention fusion 1.7m 873 85.7
Jianpeng Cheng et al."16 450D LSTMN with deep attention fusion 3.4m 88.5 86.3
Parikhetal. 16 200D decomposableattenonmodel 38k 895 863
Parikh et al. "16 200D decomposable attention model with intra-sentence attention 580k 90.5 86.8
Munkhdalai & Yu '16b 300D Full tree matching NTI-SLSTM-LSTM w/ global attention 3.2m 88.5 87.3
Zhiguo Wang et al. '17 BiMPM 1.6m 90.9 87.5
LeiShaetal.'16 300D re-read LSTM 2.0m 90.7 87.5

McCann et al. '17 Biattentive Classification Network + CoVe + Char 22m 88.5 88.1
ChuangiTan et al.'18 150D Multiway Attention Network 14m 94.5 88.3
Xiaodong Liu et al. "18 Stochastic Answer Network 3.5m 933 88.5

YiTay etal.'18 300D CAFE 4.7m 89.8 88.5
Qian Chen etal.'17 KIM 4.3m 94.1 88.6

Petersetal.'18 ESIM + ELMo 8.0m 91.6 88.7
Boyuan Pan etal. '18 300D DMAN 9.2m 95.4 88.8
Zhiguo Wang et al. "17 BiMPM Ensemble 6.4m 93.2 88.8
Yichen Gong et al. 17 448D Densely Interactive Inference Network (DIIN, code) Ensemble 17m 92.3 88.9
Seonhoon Kim et al.'18  Densely-Connected Recurrent and Co-Attentive Network 6.7m 93.1 88.9
Zhuosheng Zhang et al. '18 SLRC 6.1m 89.1 89.1
Qian Chen etal.'17 KIM Ensemble 43m 93.6 89.1
Ghaeini et al. '18 450D DR-BiLSTM Ensemble 45m 94.8 89.3

Model

SNLI

Type

Representation

RSE
G-TLSTM
DAM
ESIM
S-TLSTM
DIIN
DR-BiLSTM

86.47
85.04
85.88
88.17
88.10
88.10
88.28

Enc
Enc
CoAtt
CoAtt
CoAtt
CoAtt
CoAtt

Sequential
Recursive (latent)
Bag-of-Words
Sequential
Recursive (syntax)
Sequential
Sequential
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We select 7 models with diverse architectures and conduct a series of experiments on them to test our hypothesis 


Analysis experiments

» Adversarial Evaluation
« Expose models’ compositional-unawareness and over reliance on lexical feature.

» Compositional-removal analysis
 Reveal the limitation of current evaluation.

» Compositional-sensitivity testing
 Provide a tool to explicitly analysis models’ compositionality-sensitivity.

14
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Specifically, we test the models with rule-based adversaries to expose their unawareness to compositional information, then we note that this issue is under-addressed in the community because standard evaluation does not test for compositional information by evaluating several bag-of-word-like variants of SoTA models, and finally we propose a way to test for compositionality-sensitivity with existing data. 


Semantic-based Adversaries

Goal:

To show that models are over=reliant on word-level information and
have limited ability to process compositional structures.

15
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So first let’s talk about the adversarial examples: to show that models are over-reliant on lexical information,  


Semantic-based Adversaries

Method:

Created adversaries whose logical relations cannot be extracted from
lexical information alone.

16
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we create adversaires whose logical relations cannot be extracted from lexical information alone. More generally, we will create adversaries where the premise and the hypothesis are made up of the same lexical tokens, but have different meanings 


Semantic-based Adversaries

SubObjSwap:

« Take a premise with a subject-verb-object structure;
« Create the hypothesis by swapping the subject and object.

ROOT

subj obj
2 l N

P : A woman 1s pulling a child on a sled in the snow.

p’ : A child is pulling a woman on a sled in the snow.

SOSWAP

17


Eason
Sticky Note
Our first set of adversaries is SubjObjSwap, which as the name suggests, creates the hypothesis by swapping the subject and object of the premise, creating a contradictory sentence pair 


Semantic-based Adversaries

AddAmod:

« Take a premise that has at least two different noun entities;
* Pick an adjective modifier;

« Create the premise by adding the modifier to one of the nouns, and the hypothesis
by adding it to the other.

ROOT

amod
o
P : A yellow cat sits alone in dry grass.

T

h : A catsits alone in dry yellow grass.

ADDAMOD E{A

18
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Our second set of adversaries is called AddAmod, which adds an adjective modifier to the subject of the premise and the object of the hypothesis of an originally entailed sentence pair, creating a neutral sentence pair. 


Adversarial Evaluation Results

SNLI SOSWAP ADDAMOD

Model dev E C N E C N
RSE 86.5 1925 2.1 55 (952 02 4.6
G-TLSTM 859 (972 12 15 (959 12 29
DAM 85.0 199.7 03 00 [999 0.0 0.1
ESIM 88.2 1964 2.1 15 | 856 96 4.8
S-TLSTM 88.1 1921 44 35 (904 1.1 8.5
DIIN 88.1 | 849 45 10.6 | 55.0 04 44.6
DR-BiILSTM | 88.3 | 89.7 55 48 | 821 89 90
Human - 2 84 14 10 2 38
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We tested our seven models on these adversaries, and see that in general the models fail to capture these semantic relations, instead opting for the ‘entailment’ classification, which is likely because the premise and hypothesis have the same tokens. It’s worth noting that DIIN actually does pretty well on AddAmod, which we’ll get back to in a bit. 


Limitations of Regular Evaluation

Goal:

To show that regular evaluation fails to assess models deeper compositional
understanding.

20
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But first, let’s talk about why nobody talks about this issue even though these models obviously do not behave the same way human performs inference! And that’s because the standard evaluation metric does not test for deeper compositional understanding capabilities. 


Limitations of Regular Evaluation

Method:

Train models with compositional structures explicitly
removed and compare their results with those before on regular evaluation.

21
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To show this, we train models so that they do not learn compositional information at all, and see that their performance does not really drop by that much on the test set. 


Limitations of Regular Evaluation

RNN replacement:

Create strong bag-of-words-like models by replacing RNN layers with fully-connected
layers, and train them on the standard training set.

t t t t t t t t
Fr] o o e o] [re][re] [re
t t t t t

t
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We remove the models’ ability to capture compositional information in two ways. In the first method we replace all RNN cells in the models with FC layers, thus making the model a bag-of-words like model that is not capable of capturing compositional information. 


Limitations of Regular Evaluation

Word-Shuffled Training:

We train the NLI models with the words of the two input sentences shuffled, such that
the compositional information is diluted and hard to learn.

Model
. .
premise hypothesis

Model

4 4

shuffled premise shuffled hypothesis

23
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Secondly, we train the models on a different training set, where we shuffle the words in the training premise and hypothesis to dilute the compositional information. 


Results

Model SNLI MNLI Matched MNLI MisMatched
Original BoW WS  Original BoW WS  Original BoW WS

RSE 86.47  85.02 — 72.80  70.02 — 74.00  71.10 —

ESIM 88.17 8237 86.79 T76.16 6898 7370 76.22  69.77 74.20

DR-BiLSTM  88.28 8281 8690 7690  70.11 7327 7749 70.70 73.25

Table 3: The ”Original” columns show results for vanilla RSE, ESIM and DR-BiLSTM on SNLI, MNLI matched, and MNLI
mismatched dev set. The "BoW” column show results for BoW-like variant of RSE, ESIM, and DR-BiLSTM by replacing their
RNNs with fully-connected layers. The "WS” columns show results for ESIM and DR-BiLLSTM with words of input sentences
shuffled during training.

Removing compositional structures doesn’t induce as much performance drop as expected.

24
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We see that in these settings, the performance does not decrease as much as one would expect it to, indicating that compositional information is not critical to the models performance on the standard evaluation metrics. 


Compositionality-Sensitivity Testing

We know that:

* Models are overly relying on lexical features via adversarial evaluation.
« Standard evaluation fails to reveal this issue.

How can we analyze models’ compositionality sensitivity directly from
existing natural datasets?

25
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Now we know that the models do not behave like humans, and this issue is not exposed under standard evaluation, we need a way to evaluate models based on their understanding of compositionality. But collecting a new dataset is expensive, thus we propose a way to analyze models’ compositionality-sensitivity directly from existing dataset. 


Compositionality-Sensitivity Testing

Formalization:
Perfect Model:

Bag-of-Words Model:

Current Model:

Sy

C
» € 11, and .

p(y

p(y

p(y

.CU) fe(spashvﬂpaﬂh)
) (Spash)
'CE) — fQ(Spasha paﬁh)

S and Sh C Sh Sets of lexical features model captured
1, C T

9 Sets of compositional features model captured

Our hypothesis: 1I,, < II, and II;, < II,

26
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First let us define the problem formally, we propose a theoretical factorization of a sentence as its lexical tokens, S, and the compositional rules Pi that compose these tokens together. Our guess is that while current models do a good job of capturing the sentence’s meaning from lexical tokens, it fails short in capturing and using the compositional rules. To test this hypothesis, we use a bag-of-words model to subsample examples where compositional information is needed. 


Lexically-Misleading Score

Formally, we define the Lexically-Misleading Score
(LMS) of an NLI datapoint (x, c*) as:

r,c’) = max c|x
frms(z,c”) ceL\{c*}p( | )

where ¢* is the ground truth label, p(c | x) is the prob-
ability generated by our regression model, and L =
{entailment, contradiction, neutral} is the label set. In other

27
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Specifically, we define the lexically misleading score, which effectively selects for examples where the bag-of-words model was confidently wrong. 


Lexically-Misleading Score

Premise: Two people are sitting in a station.
Hypothesis: A couple of people are inside and not standing.

True Label: entailment Top 3 misleading features
Lexical Linear Model Prediction:

(sitting, standing)
| entailment —

not

[ contradiction T
standing
neutral |

LMS: 0.9632 (to contradiction)

Correct prediction for this example requires recognizing that ‘not standing’ and ‘sitting’ are the same state, rather
than focusing on the superficial lexical clues such as ‘not’ and the cross unigram (‘sitting’, ‘standing’) that both
mislead to ‘contradiction’.

28
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We see that the effectively selects for examples that require compositioanl information, as seen in the example here 


Lexically-Misleading Score

Premise: A group of people prepare hot air balloons for takeoff.
Hypothesis: There are hot air balloons on the ground and air.

True Label: neutral Top 3 misleading features
Lexical Linear Model Prediction: (hot, hot
] ensaimens
. contradiction
(balloons, balloons)
| neutral

LMS: 0.8643 (to entailment)

For this example, word-overlap misleads the classifier to predict ‘entailment.

29
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and here


== UNC
®

Compositionality-Sensitivity Testing Wl N p

Given a standard evaluation set and associated ‘ground-
truth’ labels, D = {(x;,¢;)}Y,, we create CS,, the

i=1>
compositionality-sensitivity evaluation set of confidence A:

CSy ={(xi,c;) € D | fryms(xi,c) > A}

30
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We then use to create the compositionality-sensitivity testing subset, where we select for examples in the dev set with a high-enough lexically misleading score. 


——
- "T"UNC

Compositionality-Sensitivity Results

<= NLP
SNLI MNLI (Matched) MNLI (MisMatched)

Model Whole Dev  CSgs CSgs CSp7 WholeDev CSps CSps CSp; WholeDev CSps CSps  CSor

1 RSE 86.47 59.01 55.59 52.73 72.80 48.48 43.57 39.62 74.00 49.30 45.84 40.85
2  G-TLST™M 85.88 5727 53.68 50.28 70.70 4532 41.20 38.14 70.81 46.33 42.03 38.87
3 ESIM 88.17 62.76  58.58 55.28 76.16 5276 49.96 48.31 76.22 54.06 51.26 48.32
4 S-TLSTM 88.10 64.60 60.57 57.51 76.06 53.92 51.54 48.90 76.04 55.60 52.40 50.61
5 DIIN 88.08 64.28 60.57 57.17 78.70 59.49 56.12 54.05 78.38 59.79 57.44 53.66
6 DR-BiLSTM 88.28 62.92 58.50 55.28 76.90 55.26 52.72 50.07 77.49 57.39 5537 53.04
7 Human 88.32 81.87 80.40 80.76 88.45 86.00 86.03 86.45 89.30 85.53 85.35 84.45
8  Majority Vote 33.82 42.13 4296 43.27 35.45 36.23 35.04 35.20 35.22 3422 35.39 34.00

Models in which compositional information removed or diluted

9 RSE (BoW) 85.02 52.82 4793 43.60 70.02 40.69 34.57 31.66 71.10 43.66 38.60 34.30
10 ESIM (BoW) 82.37 48.64 44.18 40.49 68.98 38.59 3344 30.34 69.77 41.00 3593 32.32
11  DR-BIiLSTM (BoW) 82.81 4897 4433 41.38 70.11 37.97 33.07 28.42 70.70 40.73  35.09 30.79
12 ESIM (WS) 86.79 58.41 50.61 45.49 73.70 4420 41.20 41.09 74.20 4939 4539 41.77
13  DR-BiLSTM (WS) 86.90 58.46 50.39 44.77 73.27 4577 41.20 37.85 73.25 46.33 42.03 38.26

Table 5: Results of models, human, and majority-vote baseline on different levels of compositionality-sensitivity testing. Results
of models with limited compositional information are in the bottem on the table.
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We tested our models on this subset, with results shown here, 


Compositionality-Sensitivity Results BN

SNLI MNLI (Matched) MNLI (MisMatched)

Model Whole Dev  CSgs CSoe CSo7 Whole Dev CSys CSoe CSes WholeDev CSps CSoe  CSor

1 RSE 86.47 59.01 55.59 52.73 72.80 48.48 43.57 39.62 74.00 4930 45.84 40.85
2 G-TLSTM 85.88 57.27 53.68 50.28 70.70 4532 41.20 38.14 70.81 46.33 42.03 38.87
3 ESIM 88.17 62.76 58.58 55.28 76.16 52.76 4996 48.31 76.22 54.06 51.26 48.32
4 S-TLSTM 88.10 64.60 60.57 57.51 76.06 53.92 51.54 48.90 76.04 55.60 5240 50.61
5 DIIN 88.08 64.28 60.57 57.17 78.70 59.49 56.12 54.05 78.38 59.79 57.44 53.66
6 DR-BiLSTM 88.28 62.92 5850 55.28 76.90 55.26 52.72 50.07 77.49 57.39 55.37 53.04
7 Human 88.32 81.87 80.40 80.76 88.45 86.00 86.03 86.45 89.30 85.53 85.35 84.45
8 Majority Vote 33.82 42.13 4296 43.27 35.45 36.23 35.04 35.20 35.22 3422 3539 34.00

Models in which compositional information removed or diluted

9 RSE (BoW) 85.02 52.82 4793 43.60 70.02 40.69 34.57 31.66 71.10 43.66 38.60 34.30
10 ESIM (BoW) 82.37 48.64 44.18 40.49 68.98 38.59 3344 30.34 69.77 41.00 3593 32.32
11 DR-BiLSTM (BoW) 82.81 4897 4433 41.38 70.11 37.97 33.07 28.42 70.70 40.73 35.09 30.79
12 ESIM (WS) 86.79 58.41 50.61 45.49 73.70 4420 41.20 41.09 74.20 4939 4539 41.77
13  DR-BiLSTM (WS) 86.90 58.46 50.39 44.77 73.27 4577 41.20 37.85 73.25 46.33 42.03 38.26

Table 5: Results of models, human, and majority-vote baseline on different levels of compositionality-sensitivity testing. Results
of models with limited compositional information are in the bottem on the table.
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we see that as we raise the threshold for subsampling, the performance of all the models decrease significantly. 
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Compositionality-Sensitivity Results

<= NLP
SNLI MNLI (Matched) MNLI (MisMatched)

Model Whole Dev  CSgs CSgs CSp7 WholeDev CSps CSps CSp; WholeDev CSps CSps  CSor

1 RSE 86.47 59.01 55.59 52.73 72.80 48.48 43.57 39.62 74.00 49.30 45.84 40.85
2  G-TLST™M 85.88 5727 53.68 50.28 70.70 4532 41.20 38.14 70.81 46.33 42.03 38.87
3 ESIM 88.17 62.76  58.58 55.28 76.16 5276 49.96 48.31 76.22 54.06 51.26 48.32
4 S-TLSTM 88.10 64.60 60.57 57.51 76.06 53.92 51.54 48.90 76.04 55.60 52.40 50.61
5 DIIN 88.08 64.28 60.57 57.17 78.70 59.49 56.12 54.05 78.38 59.79 57.44 53.66
6 DR-BiLSTM 88.28 62.92 58.50 55.28 76.90 55.26 52.72 50.07 77.49 57.39 5537 53.04
7 Human 88.32 81.87 80.40 80.76 88.45 86.00 86.03 86.45 89.30 85.53 85.35 84.45
8  Majority Vote 33.82 42.13 4296 43.27 35.45 36.23 35.04 35.20 35.22 3422 35.39 34.00

Models in which compositional information removed or diluted

9 RSE (BoW) 85.02 52.82 4793 43.60 70.02 40.69 34.57 31.66 71.10 43.66 38.60 34.30
10 ESIM (BoW) 82.37 48.64 44.18 40.49 68.98 38.59 3344 30.34 69.77 41.00 3593 32.32
11  DR-BIiLSTM (BoW) 82.81 4897 4433 41.38 70.11 37.97 33.07 28.42 70.70 40.73  35.09 30.79
12 ESIM (WS) 86.79 58.41 50.61 45.49 73.70 4420 41.20 41.09 74.20 4939 4539 41.77
13  DR-BiLSTM (WS) 86.90 58.46 50.39 44.77 73.27 4577 41.20 37.85 73.25 46.33 42.03 38.26

Table 5: Results of models, human, and majority-vote baseline on different levels of compositionality-sensitivity testing. Results
of models with limited compositional information are in the bottem on the table.
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However, we see that human performance does not seem to be affected nearly as much, as humans are capable of using compositional information in inference. 
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Compositionality-Sensitivity Results

L NLP
SNLI MNLI (Matched) MNLI (MisMatched)

Model Whole Dev  CSgs CSgs CSp7 WholeDev CSps CSps CSp; WholeDev CSps CSps  CSor

1 RSE 86.47 59.01 55.59 52.73 72.80 48.48 43.57 39.62 74.00 49.30 45.84 40.85
2  G-TLST™M 85.88 57.27 53.68 50.28 70.70 4532 41.20 38.14 70.81 46.33 42.03 38.87
5 DIIN 88.08 64.28 60.57 57.17 78.70 59.49 56.12 54.05 78.38 59.79 57.44 53.66
6 DR-BiLSTM 88.28 62.92 58.50 55.28 76.90 55.26 52.72 50.07 77.49 57.39 5537 53.04
7 Human 88.32 81.87 80.40 80.76 88.45 86.00 86.03 86.45 89.30 85.53 85.35 84.45
8  Majority Vote 33.82 42.13 4296 43.27 35.45 36.23 35.04 35.20 35.22 3422 35.39 34.00

Models in which compositional information removed or diluted

9 RSE (BoW) 85.02 52.82 4793 43.60 70.02 40.69 34.57 31.66 71.10 43.66 38.60 34.30
10 ESIM (BoW) 82.37 48.64 44.18 40.49 68.98 38.59 3344 30.34 69.77 41.00 3593 32.32
11  DR-BIiLSTM (BoW) 82.81 4897 4433 41.38 70.11 37.97 33.07 28.42 70.70 40.73  35.09 30.79
12 ESIM (WS) 86.79 58.41 50.61 45.49 73.70 4420 41.20 41.09 74.20 4939 4539 41.77
13  DR-BiLSTM (WS) 86.90 58.46 50.39 44.77 73.27 4577 41.20 37.85 73.25 46.33 42.03 38.26

Table 5: Results of models, human, and majority-vote baseline on different levels of compositionality-sensitivity testing. Results
of models with limited compositional information are in the bottem on the table.
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We can also draw some other insights from the performance. For example, ESIM and S-TLSTM are the same model except for the encoding layer -- where S-TLSTM uses syntax-tree based encoding instead of biRNN, and we see that it’s more effective at capturing semantics information, consistent with current literature’s findings regarding recurisve models. 


Compositionality-Sensitivity Results s o

SNLI MNLI (Matched) MNLI (MisMatched)

Model Whole Dev  CSgs CSoe CSo7 Whole Dev CSys CSoe CSes WholeDev CSps CSoe  CSor

1 RSE 86.47 59.01 55.59 52.73 72.80 48.48 43.57 39.62 74.00 4930 45.84 40.85
2 G-TLSTM 85.88 57.27 53.68 50.28 70.70 4532 41.20 38.14 70.81 46.33 42.03 38.87
3 ESIM 88.17 62.76 58.58 55.28 76.16 52.76 4996 48.31 76.22 54.06 51.26 48.32
4 S-TLSTM 88.10 64.60 60.57 57.51 76.06 53.92 51.54 48.90 76.04 55.60 5240 50.61
7 Human 88.32 81.87 80.40 80.76 88.45 86.00 86.03 86.45 89.30 85.53 85.35 84.45
8 Majority Vote 33.82 42.13 4296 43.27 35.45 36.23 35.04 35.20 35.22 3422 3539 34.00

Models in which compositional information removed or diluted

9 RSE (BoW) 85.02 52.82 4793 43.60 70.02 40.69 34.57 31.66 71.10 43.66 38.60 34.30
10 ESIM (BoW) 82.37 48.64 44.18 40.49 68.98 38.59 3344 30.34 69.77 41.00 3593 32.32
11 DR-BiLSTM (BoW) 82.81 4897 4433 41.38 70.11 37.97 33.07 28.42 70.70 40.73 35.09 30.79
12 ESIM (WS) 86.79 58.41 50.61 45.49 73.70 4420 41.20 41.09 74.20 4939 4539 41.77
13  DR-BiLSTM (WS) 86.90 58.46 50.39 44.77 73.27 4577 41.20 37.85 73.25 46.33 42.03 38.26

Table 5: Results of models, human, and majority-vote baseline on different levels of compositionality-sensitivity testing. Results
of models with limited compositional information are in the bottem on the table.
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We also see that DIIN performs very well compared to other models in this setup, we suspect that this is because DIIN’s CNN filters effectively creates a prior that modifiers are important and can therefore utilize some compositional information. 
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Compositionality-Sensitivity Results

il NL P
SNLI MNLI (Matched) MNLI (MisMatched)

Model Whole Dev CSgs CSoe CSes Whole Dev CSys CSoe CSes Whole Dev  CSps CSoe  CSor
1 RSE 8647  59.01 5559 5273  72.80 4848 4357 39.62 7400 4930 4584 40.85
2 G-TLSTM 8588 5727 5368 5028 7070 4532 4120 38.14 7081 4633 42.03 38.87
3 ESIM 88.17 6276 5858 5528  76.16 5276 4996 4831 7622 5406 5126 48.32
4 S-TLSTM 88.10  64.60 6057 5751 7606 5392 5154 4890 7604  55.60 52.40 50.61
5 DIIN 88.08 6428 6057 5717 7870 5949 5612 54.05 7838 5979 5744 53.66
6 DR-BiLSTM 8828 6292 5850 5528 7690 5526 5272 5007 7749 5739 5537 53.04
7  Human 8832  81.87 8040 80.76 8845  86.00 8603 8645 8930  85.53 8535 84.45

Models in which compositional information removed or diluted

Table 5: Results of models, human, and majority-vote baseline on different levels of compositionality-sensitivity testing. Results
of models with limited compositional information are in the bottem on the table.
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Finally, we see that all the previous BoW variants performs terribly on these subsets, barely out-performing majority-vote baseline. Indicating that success on this subsample indeed requires compositional understanding. 
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That is all, thanks for listening, and we’re open to any questions. 




